Infixnotation

Die Infixnotation ist die allgemein gebräuchliche Form der mathematischen Notation, bei der die Operatoren zwischen die Operanden gesetzt werden. Sie wird auch Algebraische Notation genannt. Beispiel:

1 + 2 · 8 / 12

Allerdings kann diese Darstellung zu Verwirrung führen, da das Ergebnis von der Operatorrangfolge (Reihenfolge der Abarbeitung der Rechenoperationen) abhängt.

Bei o. g. Beispiel sind z. B. folgende Abarbeitungen denkbar:

  • von links nach rechts:
1 + 2 = 3
3 · 8 = 24
24 / 12 = 2
  • Punktrechnung vor Strichrechnung (allgemein gebräuchliche Form):
2 · 8 = 16
16 / 12 = 1,333...
1 + 1,333... = 2,333...

Doch auch hier gibt es noch Mehrdeutigkeiten, etwa bei dem Ausdruck 1/2·3:

  • von rechts nach links als 1/(2·3):
2 · 3 = 6
1 / 6 = 0,1666...
  • von links nach rechts als (1/2)·3 (allgemein gebräuchliche Form)
1 / 2 = 0,5
0,5 · 3 = 1,5

Man hat sich deshalb bei der Infixnotation auf bestimmte Regeln zur Abarbeitung komplexerer Rechenoperationen geeinigt. Diese legen Prioritäten für einzelne Operatoren-Gruppen fest. So wird zum Beispiel Punktrechnung (Multiplikation, Division) vor der Strichrechnung (Addition, Subtraktion) ausgeführt. Treffen mehrere Punktrechnungen oder mehrere Strichrechnungen aufeinander, dann werden sie von links nach rechts ausgewertet; man sagt, die betroffenen Operatoren sind linksassoziativ.

Noch vor den Punktrechnungen werden Potenzierungen ausgewertet, sodass z. B. a b c = a ( b c ) {\displaystyle a\cdot b^{c}=a\cdot (b^{c})} ist. Die Potenzierung ist zudem rechtsassoziativ, wird also im Gegensatz zu Punkt- und Strichrechnungen von rechts nach links ausgewertet. Das bedeutet, dass beispielsweise der Ausdruck a b c d {\displaystyle a^{b^{c^{d}}}} als a ( b ( c d ) ) {\displaystyle a^{(b^{(c^{d})})}} gelesen werden muss.

Um die solcherart vordefinierte Operatorrangfolge zu verändern, benutzt man unterschiedliche Arten von Gliederungszeichen, wie die hier schon verwendeten Klammern. Mehr zum Thema der Gliederungszeichen siehe unter Operatorrangfolge: Gliederungszeichen.

Literatur

  • Robert Kowalski: Logic for Problem Solving, Revisited. Imperial College London, 1979, ISBN 978-3-7347-1585-3, Chapter 2: Infix Notation, S. 22–23. 

Siehe auch

  • Weitergehende Informationen finden sich in den Artikeln Operatorrangfolge und Operatorassoziativität.
  • Einige andere Notationen sind in den Artikeln Präfixnotation, Postfixnotation, Begriffsschriftnotation, Existential Graphs beschrieben.
  • Mit dem Shunting-yard-Algorithmus kann eine Infixnotation in die umgekehrte polnische Notation oder einen abstrakten Syntaxbaum umgewandelt werden.