Trigonometrische Gleichung

Eine trigonometrische Gleichung (auch goniometrische Gleichung) ist eine Gleichung, in der die zu bestimmende Variable im Argument von trigonometrischen Funktionen (Winkelfunktionen) vorkommt. Bei der Lösung dieser Gleichungen sind die Beziehung zwischen den Winkelfunktionen hilfreich, insbesondere die Additionstheoreme.[1]

Anzahl der Lösungen

Wegen der Periodizität der Winkelfunktionen haben trigonometrische Gleichungen im Allgemeinen unendlich viele Lösungen. Durch Beschränkung der Grundmenge auf ein „Basisintervall“ (zum Beispiel [0,2·π] oder [0,π]) reduziert man die Zahl der Lösungen auf eine endliche Anzahl oder man beschreibt die Lösungen durch einen Periodizitätssummanden (wie k·2·π oder k·π).

Beispiel

Die trigonometrische Gleichung

sin x = cos x {\displaystyle \sin \;x=\cos \;x}

kann man unter Verwendung der Beziehung cos x = 1 sin 2 x {\displaystyle \cos x={\sqrt {1-\sin ^{2}\;x}}} umformen zu

sin x = 1 sin 2 x . {\displaystyle \sin \;x={\sqrt {1-\sin ^{2}\;x}}.}

Durch Quadrieren erhält man

sin 2 x = 1 sin 2 x {\displaystyle \sin ^{2}\;x=1-\sin ^{2}\;x}

und daraus

2 sin 2 x = 1 , {\displaystyle 2\cdot \sin ^{2}\;x=1,}

also

sin x = ± 1 2 {\displaystyle \sin \;x=\pm \;{\sqrt {\frac {1}{2}}}}

mit den Lösungen

x = 45 ± k 90 ( k = 0 , 1 , 2 , . . . ) {\displaystyle x=45^{\circ }\pm k\cdot 90^{\circ }\quad (k=0,1,2,...)}

beziehungsweise im Bogenmaß

x = π 4 ± k π 2 ( k = 0 , 1 , 2 , . . . ) . {\displaystyle x={\frac {\pi }{4}}\pm k\cdot {\frac {\pi }{2}}\qquad (k=0,1,2,...).}

Da das Quadrieren keine Äquivalenzumformung ist, muss man diese Lösungen an der Ausgangsgleichung verifizieren. Dadurch erhält man als gültige Lösungen der Ausgangsgleichung

x = π 4 ± 2 k π 2 ( k = 0 , 1 , 2 , . . . ) . {\displaystyle x={\frac {\pi }{4}}\pm 2k\cdot {\frac {\pi }{2}}\qquad (k=0,1,2,...).}

Einzelnachweise

  1. Arnfried Kemnitz: Mathematik zum Studienbeginn. Vieweg + Teubner, Wiesbaden 2011, ISBN 978-3-8348-1741-9, S. 75.