Bhaskara's lemma

Mathematical lemma

Bhaskara's Lemma is an identity used as a lemma during the chakravala method. It states that:

N x 2 + k = y 2 N ( m x + y k ) 2 + m 2 N k = ( m y + N x k ) 2 {\displaystyle \,Nx^{2}+k=y^{2}\implies \,N\left({\frac {mx+y}{k}}\right)^{2}+{\frac {m^{2}-N}{k}}=\left({\frac {my+Nx}{k}}\right)^{2}}

for integers m , x , y , N , {\displaystyle m,\,x,\,y,\,N,} and non-zero integer k {\displaystyle k} .

Proof

The proof follows from simple algebraic manipulations as follows: multiply both sides of the equation by m 2 N {\displaystyle m^{2}-N} , add N 2 x 2 + 2 N m x y + N y 2 {\displaystyle N^{2}x^{2}+2Nmxy+Ny^{2}} , factor, and divide by k 2 {\displaystyle k^{2}} .

N x 2 + k = y 2 N m 2 x 2 N 2 x 2 + k ( m 2 N ) = m 2 y 2 N y 2 {\displaystyle \,Nx^{2}+k=y^{2}\implies Nm^{2}x^{2}-N^{2}x^{2}+k(m^{2}-N)=m^{2}y^{2}-Ny^{2}}
N m 2 x 2 + 2 N m x y + N y 2 + k ( m 2 N ) = m 2 y 2 + 2 N m x y + N 2 x 2 {\displaystyle \implies Nm^{2}x^{2}+2Nmxy+Ny^{2}+k(m^{2}-N)=m^{2}y^{2}+2Nmxy+N^{2}x^{2}}
N ( m x + y ) 2 + k ( m 2 N ) = ( m y + N x ) 2 {\displaystyle \implies N(mx+y)^{2}+k(m^{2}-N)=(my+Nx)^{2}}
N ( m x + y k ) 2 + m 2 N k = ( m y + N x k ) 2 . {\displaystyle \implies \,N\left({\frac {mx+y}{k}}\right)^{2}+{\frac {m^{2}-N}{k}}=\left({\frac {my+Nx}{k}}\right)^{2}.}

So long as neither k {\displaystyle k} nor m 2 N {\displaystyle m^{2}-N} are zero, the implication goes in both directions. (The lemma holds for real or complex numbers as well as integers.)

References

  • C. O. Selenius, "Rationale of the chakravala process of Jayadeva and Bhaskara II", Historia Mathematica, 2 (1975), 167-184.
  • C. O. Selenius, Kettenbruch theoretische Erklarung der zyklischen Methode zur Losung der Bhaskara-Pell-Gleichung, Acta Acad. Abo. Math. Phys. 23 (10) (1963).
  • George Gheverghese Joseph, The Crest of the Peacock: Non-European Roots of Mathematics (1975).
  • Introduction to chakravala
  • v
  • t
  • e
Number-theoretic algorithms
Primality tests
Prime-generatingInteger factorizationMultiplicationEuclidean divisionDiscrete logarithmGreatest common divisorModular square rootOther algorithms
  • Italics indicate that algorithm is for numbers of special forms


Stub icon

This article about the history of mathematics is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e