Brownian sheet

In mathematics, a Brownian sheet or multiparametric Brownian motion is a multiparametric generalization of the Brownian motion to a Gaussian random field. This means we generalize the "time" parameter t {\displaystyle t} of a Brownian motion B t {\displaystyle B_{t}} from R + {\displaystyle \mathbb {R} _{+}} to R + n {\displaystyle \mathbb {R} _{+}^{n}} .

The exact dimension n {\displaystyle n} of the space of the new time parameter varies from authors. We follow John B. Walsh and define the ( n , d ) {\displaystyle (n,d)} -Brownian sheet, while some authors define the Brownian sheet specifically only for n = 2 {\displaystyle n=2} , what we call the ( 2 , d ) {\displaystyle (2,d)} -Brownian sheet.[1]

This definition is due to Nikolai Chentsov, there exist a slightly different version due to Paul Lévy.

(n,d)-Brownian sheet

A d {\displaystyle d} -dimensional gaussian process B = ( B t , t R + n ) {\displaystyle B=(B_{t},t\in \mathbb {R} _{+}^{n})} is called a ( n , d ) {\displaystyle (n,d)} -Brownian sheet if

  • it has zero mean, i.e. E [ B t ] = 0 {\displaystyle \mathbb {E} [B_{t}]=0} for all t = ( t 1 , t n ) R + n {\displaystyle t=(t_{1},\dots t_{n})\in \mathbb {R} _{+}^{n}}
  • for the covariance function
cov ( B s ( i ) , B t ( j ) ) = { l = 1 n min ( s l , t l ) if  i = j , 0 else {\displaystyle \operatorname {cov} (B_{s}^{(i)},B_{t}^{(j)})={\begin{cases}\prod \limits _{l=1}^{n}\operatorname {min} (s_{l},t_{l})&{\text{if }}i=j,\\0&{\text{else}}\end{cases}}}
for 1 i , j d {\displaystyle 1\leq i,j\leq d} .[2]

Properties

From the definition follows

B ( 0 , t 2 , , t n ) = B ( t 1 , 0 , , t n ) = = B ( t 1 , t 2 , , 0 ) = 0 {\displaystyle B(0,t_{2},\dots ,t_{n})=B(t_{1},0,\dots ,t_{n})=\cdots =B(t_{1},t_{2},\dots ,0)=0}

almost surely.

Examples

  • ( 1 , 1 ) {\displaystyle (1,1)} -Brownian sheet is the Brownian motion in R 1 {\displaystyle \mathbb {R} ^{1}} .
  • ( 1 , d ) {\displaystyle (1,d)} -Brownian sheet is the Brownian motion in R d {\displaystyle \mathbb {R} ^{d}} .
  • ( 2 , 1 ) {\displaystyle (2,1)} -Brownian sheet is a multiparametric Brownian motion X t , s {\displaystyle X_{t,s}} with index set ( t , s ) [ 0 , ) × [ 0 , ) {\displaystyle (t,s)\in [0,\infty )\times [0,\infty )} .

Lévy's definition of the multiparametric Brownian motion

In Lévy's definition one replaces the covariance condition above with the following condition

cov ( B s , B t ) = ( | t | + | s | | t s | ) 2 {\displaystyle \operatorname {cov} (B_{s},B_{t})={\frac {(|t|+|s|-|t-s|)}{2}}}

where | | {\displaystyle |\cdot |} is the Euclidean metric on R n {\displaystyle \mathbb {R} ^{n}} .[3]

Existence of abstract Wiener measure

Consider the space Θ n + 1 2 ( R n ; R ) {\displaystyle \Theta ^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} )} of continuous functions of the form f : R n R {\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} } satisfying lim | x | ( log ( e + | x | ) ) 1 | f ( x ) | = 0. {\displaystyle \lim \limits _{|x|\to \infty }\left(\log(e+|x|)\right)^{-1}|f(x)|=0.} This space becomes a separable Banach space when equipped with the norm f Θ n + 1 2 ( R n ; R ) := sup x R n ( log ( e + | x | ) ) 1 | f ( x ) | . {\displaystyle \|f\|_{\Theta ^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} )}:=\sup _{x\in \mathbb {R} ^{n}}\left(\log(e+|x|)\right)^{-1}|f(x)|.}

Notice this space includes densely the space of zero at infinity C 0 ( R n ; R ) {\displaystyle C_{0}(\mathbb {R} ^{n};\mathbb {R} )} equipped with the uniform norm, since one can bound the uniform norm with the norm of Θ n + 1 2 ( R n ; R ) {\displaystyle \Theta ^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} )} from above through the Fourier inversion theorem.

Let S ( R n ; R ) {\displaystyle {\mathcal {S}}'(\mathbb {R} ^{n};\mathbb {R} )} be the space of tempered distributions. One can then show that there exist a suitalbe separable Hilbert space (and Sobolev space)

H n + 1 2 ( R n , R ) S ( R n ; R ) {\displaystyle H^{\frac {n+1}{2}}(\mathbb {R} ^{n},\mathbb {R} )\subseteq {\mathcal {S}}'(\mathbb {R} ^{n};\mathbb {R} )}

that is continuously embbeded as a dense subspace in C 0 ( R n ; R ) {\displaystyle C_{0}(\mathbb {R} ^{n};\mathbb {R} )} and thus also in Θ n + 1 2 ( R n ; R ) {\displaystyle \Theta ^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} )} and that there exist a probability measure ω {\displaystyle \omega } on Θ n + 1 2 ( R n ; R ) {\displaystyle \Theta ^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} )} such that the triple ( H n + 1 2 ( R n ; R ) , Θ n + 1 2 ( R n ; R ) , ω ) {\displaystyle (H^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} ),\Theta ^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} ),\omega )} is an abstract Wiener space.

A path θ Θ n + 1 2 ( R n ; R ) {\displaystyle \theta \in \Theta ^{\frac {n+1}{2}}(\mathbb {R} ^{n};\mathbb {R} )} is ω {\displaystyle \omega } -almost surely

  • Hölder continuous of exponent α ( 0 , 1 / 2 ) {\displaystyle \alpha \in (0,1/2)}
  • nowhere Hölder continuous for any α > 1 / 2 {\displaystyle \alpha >1/2} .[4]

This handles of a Brownian sheet in the case d = 1 {\displaystyle d=1} . For higher dimensional d {\displaystyle d} , the construction is similar.

See also

  • Gaussian free field

Literature

  • Stroock, Daniel (2011), Probability theory: an analytic view (2nd ed.), Cambridge.
  • Walsh, John B. (1986). An introduction to stochastic partial differential equations. Springer Berlin Heidelberg. ISBN 978-3-540-39781-6.
  • Khoshnevisan, Davar. Multiparameter Processes: An Introduction to Random Fields. Springer. ISBN 978-0387954592.

References

  1. ^ Walsh, John B. (1986). An introduction to stochastic partial differential equations. Springer Berlin Heidelberg. p. 269. ISBN 978-3-540-39781-6.
  2. ^ Davar Khoshnevisan und Yimin Xiao (2004), Images of the Brownian Sheet, arXiv:math/0409491
  3. ^ Ossiander, Mina; Pyke, Ronald (1985). "Lévy's Brownian motion as a set-indexed process and a related central limit theorem". Stochastic Processes and their Applications. 21 (1): 133–145. doi:10.1016/0304-4149(85)90382-5.
  4. ^ Stroock, Daniel (2011), Probability theory: an analytic view (2nd ed.), Cambridge, p. 349-352