Contracted Bianchi identities

In general relativity and tensor calculus, the contracted Bianchi identities are:[1]

ρ R ρ μ = 1 2 μ R {\displaystyle \nabla _{\rho }{R^{\rho }}_{\mu }={1 \over 2}\nabla _{\mu }R}

where R ρ μ {\displaystyle {R^{\rho }}_{\mu }} is the Ricci tensor, R {\displaystyle R} the scalar curvature, and ρ {\displaystyle \nabla _{\rho }} indicates covariant differentiation.

These identities are named after Luigi Bianchi, although they had been already derived by Aurel Voss in 1880.[2] In the Einstein field equations, the contracted Bianchi identity ensures consistency with the vanishing divergence of the matter stress–energy tensor.

Proof

Start with the Bianchi identity[3]

R a b m n ; + R a b m ; n + R a b n ; m = 0. {\displaystyle R_{abmn;\ell }+R_{ab\ell m;n}+R_{abn\ell ;m}=0.}

Contract both sides of the above equation with a pair of metric tensors:

g b n g a m ( R a b m n ; + R a b m ; n + R a b n ; m ) = 0 , {\displaystyle g^{bn}g^{am}(R_{abmn;\ell }+R_{ab\ell m;n}+R_{abn\ell ;m})=0,}
g b n ( R m b m n ; R m b m ; n + R m b n ; m ) = 0 , {\displaystyle g^{bn}(R^{m}{}_{bmn;\ell }-R^{m}{}_{bm\ell ;n}+R^{m}{}_{bn\ell ;m})=0,}
g b n ( R b n ; R b ; n R b m n ; m ) = 0 , {\displaystyle g^{bn}(R_{bn;\ell }-R_{b\ell ;n}-R_{b}{}^{m}{}_{n\ell ;m})=0,}
R n n ; R n ; n R n m n ; m = 0. {\displaystyle R^{n}{}_{n;\ell }-R^{n}{}_{\ell ;n}-R^{nm}{}_{n\ell ;m}=0.}

The first term on the left contracts to yield a Ricci scalar, while the third term contracts to yield a mixed Ricci tensor,

R ; R n ; n R m ; m = 0. {\displaystyle R_{;\ell }-R^{n}{}_{\ell ;n}-R^{m}{}_{\ell ;m}=0.}

The last two terms are the same (changing dummy index n to m) and can be combined into a single term which shall be moved to the right,

R ; = 2 R m ; m , {\displaystyle R_{;\ell }=2R^{m}{}_{\ell ;m},}

which is the same as

m R m = 1 2 R . {\displaystyle \nabla _{m}R^{m}{}_{\ell }={1 \over 2}\nabla _{\ell }R.}

Swapping the index labels l and m on the left side yields

R m = 1 2 m R . {\displaystyle \nabla _{\ell }R^{\ell }{}_{m}={1 \over 2}\nabla _{m}R.}

See also

Notes

  1. ^ Bianchi, Luigi (1902), "Sui simboli a quattro indici e sulla curvatura di Riemann", Rend. Acc. Naz. Lincei (in Italian), 11 (5): 3–7
  2. ^ Voss, A. (1880), "Zur Theorie der Transformation quadratischer Differentialausdrücke und der Krümmung höherer Mannigfaltigketien", Mathematische Annalen, 16 (2): 129–178, doi:10.1007/bf01446384, S2CID 122828265
  3. ^ Synge J.L., Schild A. (1949). Tensor Calculus. pp. 87–89–90.

References

  • Lovelock, David; Hanno Rund (1989) [1975]. Tensors, Differential Forms, and Variational Principles. Dover. ISBN 978-0-486-65840-7.
  • Synge J.L., Schild A. (1949). Tensor Calculus. first Dover Publications 1978 edition. ISBN 978-0-486-63612-2.
  • J.R. Tyldesley (1975), An introduction to Tensor Analysis: For Engineers and Applied Scientists, Longman, ISBN 0-582-44355-5
  • D.C. Kay (1988), Tensor Calculus, Schaum’s Outlines, McGraw Hill (USA), ISBN 0-07-033484-6
  • T. Frankel (2012), The Geometry of Physics (3rd ed.), Cambridge University Press, ISBN 978-1107-602601


  • v
  • t
  • e
Stub icon

This relativity-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e