Extranatural transformation

Generalization of natural transformations

In mathematics, specifically in category theory, an extranatural transformation[1] is a generalization of the notion of natural transformation.

Definition

Let F : A × B o p × B D {\displaystyle F:A\times B^{\mathrm {op} }\times B\rightarrow D} and G : A × C o p × C D {\displaystyle G:A\times C^{\mathrm {op} }\times C\rightarrow D} be two functors of categories. A family η ( a , b , c ) : F ( a , b , b ) G ( a , c , c ) {\displaystyle \eta (a,b,c):F(a,b,b)\rightarrow G(a,c,c)} is said to be natural in a and extranatural in b and c if the following holds:

  • η ( , b , c ) {\displaystyle \eta (-,b,c)} is a natural transformation (in the usual sense).
  • (extranaturality in b) ( g : b b ) M o r B {\displaystyle \forall (g:b\rightarrow b^{\prime })\in \mathrm {Mor} \,B} , a A {\displaystyle \forall a\in A} , c C {\displaystyle \forall c\in C} the following diagram commutes
F ( a , b , b ) F ( 1 , 1 , g ) F ( a , b , b ) F ( 1 , g , 1 ) η ( a , b , c ) F ( a , b , b ) η ( a , b , c ) G ( a , c , c ) {\displaystyle {\begin{matrix}F(a,b',b)&\xrightarrow {F(1,1,g)} &F(a,b',b')\\_{F(1,g,1)}\downarrow \qquad &&_{\eta (a,b',c)}\downarrow \qquad \\F(a,b,b)&\xrightarrow {\eta (a,b,c)} &G(a,c,c)\end{matrix}}}
  • (extranaturality in c) ( h : c c ) M o r C {\displaystyle \forall (h:c\rightarrow c^{\prime })\in \mathrm {Mor} \,C} , a A {\displaystyle \forall a\in A} , b B {\displaystyle \forall b\in B} the following diagram commutes
F ( a , b , b ) η ( a , b , c ) G ( a , c , c ) η ( a , b , c ) G ( 1 , h , 1 ) G ( a , c , c ) G ( 1 , 1 , h ) G ( a , c , c ) {\displaystyle {\begin{matrix}F(a,b,b)&\xrightarrow {\eta (a,b,c')} &G(a,c',c')\\_{\eta (a,b,c)}\downarrow \qquad &&_{G(1,h,1)}\downarrow \qquad \\G(a,c,c)&\xrightarrow {G(1,1,h)} &G(a,c,c')\end{matrix}}}

Properties

Extranatural transformations can be used to define wedges and thereby ends[2] (dually co-wedges and co-ends), by setting F {\displaystyle F} (dually G {\displaystyle G} ) constant.

Extranatural transformations can be defined in terms of dinatural transformations, of which they are a special case.[2]

See also

  • Dinatural transformation

References

  1. ^ Eilenberg and Kelly, A generalization of the functorial calculus, J. Algebra 3 366–375 (1966)
  2. ^ a b Fosco Loregian, This is the (co)end, my only (co)friend, arXiv preprint [1]
  • extranatural+transformation at the nLab