Fritz John conditions

The Fritz John conditions (abbr. FJ conditions), in mathematics, are a necessary condition for a solution in nonlinear programming to be optimal.[1] They are used as lemma in the proof of the Karush–Kuhn–Tucker conditions, but they are relevant on their own.

We consider the following optimization problem:

minimize  f ( x ) subject to:  g i ( x ) 0 ,   i { 1 , , m } h j ( x ) = 0 ,   j { m + 1 , , n } {\displaystyle {\begin{aligned}{\text{minimize }}&f(x)\,\\{\text{subject to: }}&g_{i}(x)\leq 0,\ i\in \left\{1,\dots ,m\right\}\\&h_{j}(x)=0,\ j\in \left\{m+1,\dots ,n\right\}\end{aligned}}}

where ƒ is the function to be minimized, g i {\displaystyle g_{i}} the inequality constraints and h j {\displaystyle h_{j}} the equality constraints, and where, respectively, I {\displaystyle {\mathcal {I}}} , A {\displaystyle {\mathcal {A}}} and E {\displaystyle {\mathcal {E}}} are the indices sets of inactive, active and equality constraints and x {\displaystyle x^{*}} is an optimal solution of f {\displaystyle f} , then there exists a non-zero vector λ = [ λ 0 , λ 1 , λ 2 , , λ n ] {\displaystyle \lambda =[\lambda _{0},\lambda _{1},\lambda _{2},\dots ,\lambda _{n}]} such that:

{ λ 0 f ( x ) + i A λ i g i ( x ) + i E λ i h i ( x ) = 0 λ i 0 ,   i A { 0 } i ( { 0 , 1 , , n } I ) ( λ i 0 ) {\displaystyle {\begin{cases}\lambda _{0}\nabla f(x^{*})+\sum \limits _{i\in {\mathcal {A}}}\lambda _{i}\nabla g_{i}(x^{*})+\sum \limits _{i\in {\mathcal {E}}}\lambda _{i}\nabla h_{i}(x^{*})=0\\[10pt]\lambda _{i}\geq 0,\ i\in {\mathcal {A}}\cup \{0\}\\[10pt]\exists i\in \left(\{0,1,\ldots ,n\}\backslash {\mathcal {I}}\right)\left(\lambda _{i}\neq 0\right)\end{cases}}}

λ 0 > 0 {\displaystyle \lambda _{0}>0} if the g i ( i A ) {\displaystyle \nabla g_{i}(i\in {\mathcal {A}})} and h i ( i E ) {\displaystyle \nabla h_{i}(i\in {\mathcal {E}})} are linearly independent or, more generally, when a constraint qualification holds.

Named after Fritz John, these conditions are equivalent to the Karush–Kuhn–Tucker conditions in the case λ 0 > 0 {\displaystyle \lambda _{0}>0} . When λ 0 = 0 {\displaystyle \lambda _{0}=0} , the condition is equivalent to the violation of Mangasarian–Fromovitz constraint qualification (MFCQ). In other words, the Fritz John condition is equivalent to the optimality condition KKT or not-MFCQ.[citation needed]

References

  1. ^ Takayama, Akira (1985). Mathematical Economics. New York: Cambridge University Press. pp. 90–112. ISBN 0-521-31498-4.

Further reading

  • Rau, Nicholas (1981). "Lagrange Multipliers". Matrices and Mathematical Programming. London: Macmillan. pp. 156–174. ISBN 0-333-27768-6.