H-derivative

In mathematics, the H-derivative is a notion of derivative in the study of abstract Wiener spaces and the Malliavin calculus.[1]

Definition

Let i : H E {\displaystyle i:H\to E} be an abstract Wiener space, and suppose that F : E R {\displaystyle F:E\to \mathbb {R} } is differentiable. Then the Fréchet derivative is a map

D F : E L i n ( E ; R ) {\displaystyle \mathrm {D} F:E\to \mathrm {Lin} (E;\mathbb {R} )} ;

i.e., for x E {\displaystyle x\in E} , D F ( x ) {\displaystyle \mathrm {D} F(x)} is an element of E {\displaystyle E^{*}} , the dual space to E {\displaystyle E} .

Therefore, define the H {\displaystyle H} -derivative D H F {\displaystyle \mathrm {D} _{H}F} at x E {\displaystyle x\in E} by

D H F ( x ) := D F ( x ) i : H R {\displaystyle \mathrm {D} _{H}F(x):=\mathrm {D} F(x)\circ i:H\to \mathbb {R} } ,

a continuous linear map on H {\displaystyle H} .

Define the H {\displaystyle H} -gradient H F : E H {\displaystyle \nabla _{H}F:E\to H} by

H F ( x ) , h H = ( D H F ) ( x ) ( h ) = lim t 0 F ( x + t i ( h ) ) F ( x ) t {\displaystyle \langle \nabla _{H}F(x),h\rangle _{H}=\left(\mathrm {D} _{H}F\right)(x)(h)=\lim _{t\to 0}{\frac {F(x+ti(h))-F(x)}{t}}} .

That is, if j : E H {\displaystyle j:E^{*}\to H} denotes the adjoint of i : H E {\displaystyle i:H\to E} , we have H F ( x ) := j ( D F ( x ) ) {\displaystyle \nabla _{H}F(x):=j\left(\mathrm {D} F(x)\right)} .

See also

  • Malliavin derivative

References

  1. ^ Victor Kac; Pokman Cheung (2002). Quantum Calculus. New York: Springer. pp. 80–84. doi:10.1007/978-1-4613-0071-7. ISBN 978-1-4613-0071-7.


  • v
  • t
  • e