Hermite's identity

Gives the value of a summation involving the floor function

In mathematics, Hermite's identity, named after Charles Hermite, gives the value of a summation involving the floor function. It states that for every real number x and for every positive integer n the following identity holds:[1][2]

k = 0 n 1 x + k n = n x . {\displaystyle \sum _{k=0}^{n-1}\left\lfloor x+{\frac {k}{n}}\right\rfloor =\lfloor nx\rfloor .}

Proofs

Proof by algebraic manipulation

Split x {\displaystyle x} into its integer part and fractional part, x = x + { x } {\displaystyle x=\lfloor x\rfloor +\{x\}} . There is exactly one k { 1 , , n } {\displaystyle k'\in \{1,\ldots ,n\}} with

x = x + k 1 n x < x + k n = x + 1. {\displaystyle \lfloor x\rfloor =\left\lfloor x+{\frac {k'-1}{n}}\right\rfloor \leq x<\left\lfloor x+{\frac {k'}{n}}\right\rfloor =\lfloor x\rfloor +1.}

By subtracting the same integer x {\displaystyle \lfloor x\rfloor } from inside the floor operations on the left and right sides of this inequality, it may be rewritten as

0 = { x } + k 1 n { x } < { x } + k n = 1. {\displaystyle 0=\left\lfloor \{x\}+{\frac {k'-1}{n}}\right\rfloor \leq \{x\}<\left\lfloor \{x\}+{\frac {k'}{n}}\right\rfloor =1.}

Therefore,

1 k n { x } < 1 k 1 n , {\displaystyle 1-{\frac {k'}{n}}\leq \{x\}<1-{\frac {k'-1}{n}},}

and multiplying both sides by n {\displaystyle n} gives

n k n { x } < n k + 1. {\displaystyle n-k'\leq n\,\{x\}<n-k'+1.}

Now if the summation from Hermite's identity is split into two parts at index k {\displaystyle k'} , it becomes

k = 0 n 1 x + k n = k = 0 k 1 x + k = k n 1 ( x + 1 ) = n x + n k = n x + n { x } = n x + n { x } = n x . {\displaystyle {\begin{aligned}\sum _{k=0}^{n-1}\left\lfloor x+{\frac {k}{n}}\right\rfloor &=\sum _{k=0}^{k'-1}\lfloor x\rfloor +\sum _{k=k'}^{n-1}(\lfloor x\rfloor +1)=n\,\lfloor x\rfloor +n-k'\\[8pt]&=n\,\lfloor x\rfloor +\lfloor n\,\{x\}\rfloor =\left\lfloor n\,\lfloor x\rfloor +n\,\{x\}\right\rfloor =\lfloor nx\rfloor .\end{aligned}}}

Proof using functions

Consider the function

f ( x ) = x + x + 1 n + + x + n 1 n n x {\displaystyle f(x)=\lfloor x\rfloor +\left\lfloor x+{\frac {1}{n}}\right\rfloor +\ldots +\left\lfloor x+{\frac {n-1}{n}}\right\rfloor -\lfloor nx\rfloor }

Then the identity is clearly equivalent to the statement f ( x ) = 0 {\displaystyle f(x)=0} for all real x {\displaystyle x} . But then we find,

f ( x + 1 n ) = x + 1 n + x + 2 n + + x + 1 n x + 1 = f ( x ) {\displaystyle f\left(x+{\frac {1}{n}}\right)=\left\lfloor x+{\frac {1}{n}}\right\rfloor +\left\lfloor x+{\frac {2}{n}}\right\rfloor +\ldots +\left\lfloor x+1\right\rfloor -\lfloor nx+1\rfloor =f(x)}

Where in the last equality we use the fact that x + p = x + p {\displaystyle \lfloor x+p\rfloor =\lfloor x\rfloor +p} for all integers p {\displaystyle p} . But then f {\displaystyle f} has period 1 / n {\displaystyle 1/n} . It then suffices to prove that f ( x ) = 0 {\displaystyle f(x)=0} for all x [ 0 , 1 / n ) {\displaystyle x\in [0,1/n)} . But in this case, the integral part of each summand in f {\displaystyle f} is equal to 0. We deduce that the function is indeed 0 for all real inputs x {\displaystyle x} .

References

  1. ^ Savchev, Svetoslav; Andreescu, Titu (2003), "12 Hermite's Identity", Mathematical Miniatures, New Mathematical Library, vol. 43, Mathematical Association of America, pp. 41–44, ISBN 9780883856451.
  2. ^ Matsuoka, Yoshio (1964), "Classroom Notes: On a Proof of Hermite's Identity", The American Mathematical Monthly, 71 (10): 1115, doi:10.2307/2311413, JSTOR 2311413, MR 1533020.