KEAP1

Protein-coding gene in the species Homo sapiens
KEAP1
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

1U6D, 1ZGK, 2FLU, 3VNG, 3VNH, 3ZGC, 3ZGD, 4CXI, 4CXJ, 4CXT, 4IFJ, 4IFL, 4IFN, 4IN4, 4IQK, 4L7B, 4L7C, 4L7D, 4N1B, 4XMB

Identifiers
AliasesKEAP1, INrf2, KLHL19, kelch like ECH associated protein 1
External IDsOMIM: 606016; MGI: 1858732; HomoloGene: 8184; GeneCards: KEAP1; OMA:KEAP1 - orthologs
Gene location (Human)
Chromosome 19 (human)
Chr.Chromosome 19 (human)[1]
Chromosome 19 (human)
Genomic location for KEAP1
Genomic location for KEAP1
Band19p13.2Start10,486,125 bp[1]
End10,503,558 bp[1]
Gene location (Mouse)
Chromosome 9 (mouse)
Chr.Chromosome 9 (mouse)[2]
Chromosome 9 (mouse)
Genomic location for KEAP1
Genomic location for KEAP1
Band9|9 A3Start21,141,026 bp[2]
End21,150,657 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • muscle of thigh

  • gastrocnemius muscle

  • apex of heart

  • Skeletal muscle tissue of rectus abdominis

  • stromal cell of endometrium

  • quadriceps femoris muscle

  • vastus lateralis muscle

  • C1 segment

  • glutes

  • Skeletal muscle tissue of biceps brachii
Top expressed in
  • supraoptic nucleus

  • ascending aorta

  • muscle of thigh

  • aortic valve

  • trigeminal ganglion

  • Paneth cell

  • arcuate nucleus

  • renal corpuscle

  • dorsal tegmental nucleus

  • skeletal muscle tissue
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
  • transcription factor binding
  • ubiquitin-protein transferase activity
  • protein binding
  • protein homodimerization activity
  • disordered domain specific binding
  • identical protein binding
Cellular component
  • cytoplasm
  • Cul3-RING ubiquitin ligase complex
  • nucleoplasm
  • microtubule organizing center
  • midbody
  • endoplasmic reticulum
  • actin filament
  • nucleus
  • cytosol
  • protein-containing complex
Biological process
  • cellular response to interleukin-4
  • regulation of epidermal cell differentiation
  • regulation of transcription, DNA-templated
  • in utero embryonic development
  • proteasomal ubiquitin-independent protein catabolic process
  • negative regulation of DNA-binding transcription factor activity
  • transcription, DNA-templated
  • protein ubiquitination
  • positive regulation of proteasomal ubiquitin-dependent protein catabolic process
  • cytoplasmic sequestering of transcription factor
  • protein deubiquitination
  • post-translational protein modification
  • viral process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

9817

50868

Ensembl

ENSG00000079999

ENSMUSG00000003308

UniProt

Q14145

Q9Z2X8

RefSeq (mRNA)

NM_012289
NM_203500

NM_001110305
NM_001110306
NM_001110307
NM_016679

RefSeq (protein)

NP_036421
NP_987096

NP_001103775
NP_001103776
NP_001103777
NP_057888

Location (UCSC)Chr 19: 10.49 – 10.5 MbChr 9: 21.14 – 21.15 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Kelch-like ECH-associated protein 1 is a protein that in humans is encoded by the Keap1 gene.[5]

Structure

Keap1 has four discrete protein domains. The N-terminal Broad complex, Tramtrack and Bric-à-Brac (BTB) domain contains the Cys151 residue, which is one of the important cysteines in stress sensing. The intervening region (IVR) domain contains two critical cysteine residues, Cys273 and Cys288, which are a second group of cysteines important for stress sensing. A double glycine repeat (DGR) and C-terminal region domains collaborate to form a β-propeller structure, which is where Keap1 interacts with Nrf2.

Interactions

The KEAP1/NRF2 pathway modulates the body's antitumor response

Keap1 has been shown to interact with Nrf2, a master regulator of the antioxidant response, which is important for the amelioration of oxidative stress.[6][7][8]

Under quiescent conditions, Nrf2 is anchored in the cytoplasm through binding to Keap1, which, in turn, facilitates the ubiquitination and subsequent proteolysis of Nrf2. Such sequestration and further degradation of Nrf2 in the cytoplasm are mechanisms for the repressive effects of Keap1 on Nrf2. Keap1 is not only a tumor suppressor gene, but also a metastasis suppressor gene.[9]

Recently, several interesting studies have also identified a hidden circuit in NRF2 regulations. In the mouse Keap1 (INrf2) gene, Lee and colleagues [10] found that an AREs located on a negative strand can subtly connect Nrf2 activation to Keap1 transcription. When examining NRF2 occupancies in human lymphocytes, Chorley and colleagues identified an approximately 700 bp locus within the KEAP1 promoter region was consistently top rank enriched, even at the whole-genome scale.[11] These basic findings have depicted a mutually influenced pattern between NRF2 and KEAP1. NRF2-driven KEAP1 expression characterized in human cancer contexts, especially in human squamous cell cancers,[12] depicted a new perspective in understanding NRF2 signaling regulation.

As a drug target

Because Nrf2 activation leads to a coordinated antioxidant and anti-inflammatory response, and Keap1 represses Nrf2 activation, Keap1 has become a very attractive drug target.[13][14][15][16]

A series of synthetic oleane triterpenoid compounds, known as antioxidant inflammation modulators (AIMs), are being developed by Reata Pharmaceuticals, Inc. and are potent inducers of the Keap1-Nrf2 pathway, blocking Keap1-dependent Nrf2 ubiquitination and leading to the stabilization and nuclear translocation of Nrf2 and subsequent induction of Nrf2 target genes.[citation needed] The lead compound in this series, bardoxolone methyl (also known as CDDO-Me or RTA 402), was in late-stage clinical trials for the treatment of chronic kidney disease (CKD) in patients with type 2 diabetes mellitus and showed an ability to improve markers of renal function in these patients.[citation needed] However, the Phase 3 trial was halted due to safety concerns.

Human health

Mutations in KEAP1 that result in loss-of-function are not linked to familial cancers, though they do predispose individuals to multinodular goiters. The proposed mechanism leading to goiter formation is that the redox stress experienced when the thyroid produces hormones selects for loss of heterozygosity of KEAP1, leading to the goiters.[17]

  • (a) NRF2 and KEAP1 protein domains; (b) KEAP1 homodimerizes through the BTB domain, and through the Kelch domains KEAP1 interacts with NRF2 at the ETGE and DLG motifs[17]
    (a) NRF2 and KEAP1 protein domains; (b) KEAP1 homodimerizes through the BTB domain, and through the Kelch domains KEAP1 interacts with NRF2 at the ETGE and DLG motifs[17]
  • The relationship of the NRF2/KEAP1 pathway with cellular metabolism[17]
    The relationship of the NRF2/KEAP1 pathway with cellular metabolism[17]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000079999 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000003308 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: KEAP1 kelch-like ECH-associated protein 1".
  6. ^ Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (October 2003). "Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival". Molecular and Cellular Biology. 23 (20): 7198–209. doi:10.1128/mcb.23.20.7198-7209.2003. PMC 230321. PMID 14517290.
  7. ^ Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K, et al. (September 2008). "Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy". Proceedings of the National Academy of Sciences of the United States of America. 105 (36): 13568–73. Bibcode:2008PNAS..10513568S. doi:10.1073/pnas.0806268105. PMC 2533230. PMID 18757741.
  8. ^ Wang XJ, Sun Z, Chen W, Li Y, Villeneuve NF, Zhang DD (August 2008). "Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: enhanced Keap1-Cul3 interaction". Toxicology and Applied Pharmacology. 230 (3): 383–9. doi:10.1016/j.taap.2008.03.003. PMC 2610481. PMID 18417180.
  9. ^ Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, et al. (July 2019). "Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1". Cell. 178 (2): 316–329.e18. doi:10.1016/j.cell.2019.06.003. PMC 6625921. PMID 31257023.
  10. ^ Lee OH, Jain AK, Papusha V, Jaiswal AK (December 2007). "An auto-regulatory loop between stress sensors INrf2 and Nrf2 controls their cellular abundance". The Journal of Biological Chemistry. 282 (50): 36412–20. doi:10.1074/jbc.M706517200. PMID 17925401.
  11. ^ Chorley BN, Campbell MR, Wang X, Karaca M, Sambandan D, Bangura F, et al. (August 2012). "Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha". Nucleic Acids Research. 40 (15): 7416–29. doi:10.1093/nar/gks409. PMC 3424561. PMID 22581777.
  12. ^ Tian Y, Liu Q, Yu S, Chu Q, Chen Y, Wu K, Wang L (October 2020). "NRF2-Driven KEAP1 Transcription in Human Lung Cancer". Molecular Cancer Research. 18 (10): 1465–1476. doi:10.1158/1541-7786.MCR-20-0108. PMID 32571982. S2CID 219989242.
  13. ^ Abed DA, Goldstein M, Albanyan H, Jin H, Hu L (July 2015). "Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents". Acta Pharmaceutica Sinica B. 5 (4): 285–99. doi:10.1016/j.apsb.2015.05.008. PMC 4629420. PMID 26579458.
  14. ^ Lu MC, Ji JA, Jiang ZY, You QD (September 2016). "The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update". Medicinal Research Reviews. 36 (5): 924–63. doi:10.1002/med.21396. PMID 27192495. S2CID 30047975.
  15. ^ Deshmukh P, Unni S, Krishnappa G, Padmanabhan B (February 2017). "The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases". Biophysical Reviews. 9 (1): 41–56. doi:10.1007/s12551-016-0244-4. PMC 5425799. PMID 28510041.
  16. ^ Kerr F, Sofola-Adesakin O, Ivanov DK, Gatliff J, Gomez Perez-Nievas B, Bertrand HC, et al. (March 2017). "Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer's disease". PLOS Genetics. 13 (3): e1006593. doi:10.1371/journal.pgen.1006593. PMC 5333801. PMID 28253260.
  17. ^ a b c Wu WL, Papagiannakopoulos T (2020-03-09). "The Pleiotropic Role of the KEAP1/NRF2 Pathway in Cancer". Annual Review of Cancer Biology. 4 (1): 413–435. doi:10.1146/annurev-cancerbio-030518-055627. ISSN 2472-3428.

Further reading

  • Zhang DD (2007). "Mechanistic studies of the Nrf2-Keap1 signaling pathway". Drug Metabolism Reviews. 38 (4): 769–89. CiteSeerX 10.1.1.600.2452. doi:10.1080/03602530600971974. PMID 17145701. S2CID 7627379.
  • Nagase T, Seki N, Tanaka A, Ishikawa K, Nomura N (August 1995). "Prediction of the coding sequences of unidentified human genes. IV. The coding sequences of 40 new genes (KIAA0121-KIAA0160) deduced by analysis of cDNA clones from human cell line KG-1". DNA Research. 2 (4): 167–74, 199–210. doi:10.1093/dnares/2.4.167. PMID 8590280.
  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (January 1999). "Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain". Genes & Development. 13 (1): 76–86. doi:10.1101/gad.13.1.76. PMC 316370. PMID 9887101.
  • Dhakshinamoorthy S, Jaiswal AK (June 2001). "Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene". Oncogene. 20 (29): 3906–17. doi:10.1038/sj.onc.1204506. PMID 11439354.
  • Sekhar KR, Spitz DR, Harris S, Nguyen TT, Meredith MJ, Holt JT, et al. (April 2002). "Redox-sensitive interaction between KIAA0132 and Nrf2 mediates indomethacin-induced expression of gamma-glutamylcysteine synthetase". Free Radical Biology & Medicine. 32 (7): 650–62. doi:10.1016/S0891-5849(02)00755-4. PMID 11909699.
  • Velichkova M, Guttman J, Warren C, Eng L, Kline K, Vogl AW, Hasson T (March 2002). "A human homologue of Drosophila kelch associates with myosin-VIIa in specialized adhesion junctions". Cell Motility and the Cytoskeleton. 51 (3): 147–64. doi:10.1002/cm.10025. PMID 11921171.
  • Zipper LM, Mulcahy RT (September 2002). "The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm". The Journal of Biological Chemistry. 277 (39): 36544–52. doi:10.1074/jbc.M206530200. PMID 12145307.
  • Sekhar KR, Yan XX, Freeman ML (October 2002). "Nrf2 degradation by the ubiquitin proteasome pathway is inhibited by KIAA0132, the human homolog to INrf2". Oncogene. 21 (44): 6829–34. doi:10.1038/sj.onc.1205905. PMID 12360409.
  • Bloom DA, Jaiswal AK (November 2003). "Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression". The Journal of Biological Chemistry. 278 (45): 44675–82. doi:10.1074/jbc.M307633200. PMID 12947090.
  • Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (October 2003). "Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival". Molecular and Cellular Biology. 23 (20): 7198–209. doi:10.1128/MCB.23.20.7198-7209.2003. PMC 230321. PMID 14517290.
  • Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, et al. (July 2004). "Functional proteomics mapping of a human signaling pathway". Genome Research. 14 (7): 1324–32. doi:10.1101/gr.2334104. PMC 442148. PMID 15231748.
  • Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, et al. (August 2004). "Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2". Molecular and Cellular Biology. 24 (16): 7130–9. doi:10.1128/MCB.24.16.7130-7139.2004. PMC 479737. PMID 15282312.
  • Strachan GD, Morgan KL, Otis LL, Caltagarone J, Gittis A, Bowser R, Jordan-Sciutto KL (September 2004). "Fetal Alz-50 clone 1 interacts with the human orthologue of the Kelch-like Ech-associated protein". Biochemistry. 43 (38): 12113–22. doi:10.1021/bi0494166. PMC 3670950. PMID 15379550.
  • Li X, Zhang D, Hannink M, Beamer LJ (December 2004). "Crystal structure of the Kelch domain of human Keap1". The Journal of Biological Chemistry. 279 (52): 54750–8. doi:10.1074/jbc.M410073200. PMID 15475350.
  • Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (December 2004). "Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex". Molecular and Cellular Biology. 24 (24): 10941–53. doi:10.1128/MCB.24.24.10941-10953.2004. PMC 533977. PMID 15572695.
  • Li X, Zhang D, Hannink M, Beamer LJ (December 2004). "Crystallization and initial crystallographic analysis of the Kelch domain from human Keap1". Acta Crystallographica. Section D, Biological Crystallography. 60 (Pt 12 Pt 2): 2346–8. Bibcode:2004AcCrD..60.2346L. CiteSeerX 10.1.1.631.1273. doi:10.1107/S0907444904024825. PMID 15583386.
  • Furukawa M, Xiong Y (January 2005). "BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase". Molecular and Cellular Biology. 25 (1): 162–71. doi:10.1128/MCB.25.1.162-171.2005. PMC 538799. PMID 15601839.
  • Hosoya T, Maruyama A, Kang MI, Kawatani Y, Shibata T, Uchida K, et al. (July 2005). "Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells". The Journal of Biological Chemistry. 280 (29): 27244–50. doi:10.1074/jbc.M502551200. PMID 15917255.
  • v
  • t
  • e
  • 1u6d: Crystal structure of the Kelch domain of human Keap1
    1u6d: Crystal structure of the Kelch domain of human Keap1
  • 1x2j: Structural basis for the defects of human lung cancer somatic mutations in the repression activity of Keap1 on Nrf2
    1x2j: Structural basis for the defects of human lung cancer somatic mutations in the repression activity of Keap1 on Nrf2
  • 1x2r: Structural basis for the defects of human lung cancer somatic mutations in the repression activity of Keap1 on Nrf2
    1x2r: Structural basis for the defects of human lung cancer somatic mutations in the repression activity of Keap1 on Nrf2
  • 1zgk: 1.35 angstrom structure of the Kelch domain of Keap1
    1zgk: 1.35 angstrom structure of the Kelch domain of Keap1
  • 2flu: Crystal Structure of the Kelch-Neh2 Complex
    2flu: Crystal Structure of the Kelch-Neh2 Complex