McKay graph

Construction in graph theory

Affine (extended) Dynkin diagrams

In mathematics, the McKay graph of a finite-dimensional representation V of a finite group G is a weighted quiver encoding the structure of the representation theory of G. Each node represents an irreducible representation of G. If χ i, χ j are irreducible representations of G, then there is an arrow from χ i to χ j if and only if χ j is a constituent of the tensor product V χ i . {\displaystyle V\otimes \chi _{i}.} Then the weight nij of the arrow is the number of times this constituent appears in V χ i . {\displaystyle V\otimes \chi _{i}.} For finite subgroups H of GL ( 2 , C ) , {\displaystyle {\text{GL}}(2,\mathbb {C} ),} the McKay graph of H is the McKay graph of the defining 2-dimensional representation of H.

If G has n irreducible characters, then the Cartan matrix cV of the representation V of dimension d is defined by c V = ( d δ i j n i j ) i j , {\displaystyle c_{V}=(d\delta _{ij}-n_{ij})_{ij},} where δ is the Kronecker delta. A result by Robert Steinberg states that if g is a representative of a conjugacy class of G, then the vectors ( ( χ i ( g ) ) i {\displaystyle ((\chi _{i}(g))_{i}} are the eigenvectors of cV to the eigenvalues d χ V ( g ) , {\displaystyle d-\chi _{V}(g),} where χV is the character of the representation V.[1]

The McKay correspondence, named after John McKay, states that there is a one-to-one correspondence between the McKay graphs of the finite subgroups of SL ( 2 , C ) {\displaystyle {\text{SL}}(2,\mathbb {C} )} and the extended Dynkin diagrams, which appear in the ADE classification of the simple Lie algebras.[2]

Definition

Let G be a finite group, V be a representation of G and χ be its character. Let { χ 1 , , χ d } {\displaystyle \{\chi _{1},\ldots ,\chi _{d}\}} be the irreducible representations of G. If

V χ i = j n i j χ j , {\displaystyle V\otimes \chi _{i}=\sum _{j}n_{ij}\chi _{j},}

then define the McKay graph ΓG of G, relative to V, as follows:

  • Each irreducible representation of G corresponds to a node in ΓG.
  • If nij > 0, there is an arrow from χ i to χ j of weight nij, written as χ i n i j χ j , {\displaystyle \chi _{i}\xrightarrow {n_{ij}} \chi _{j},} or sometimes as nij unlabeled arrows.
  • If n i j = n j i , {\displaystyle n_{ij}=n_{ji},} we denote the two opposite arrows between χ i, χ j as an undirected edge of weight nij. Moreover, if n i j = 1 , {\displaystyle n_{ij}=1,} we omit the weight label.

We can calculate the value of nij using inner product , {\displaystyle \langle \cdot ,\cdot \rangle } on characters:

n i j = V χ i , χ j = 1 | G | g G V ( g ) χ i ( g ) χ j ( g ) ¯ . {\displaystyle n_{ij}=\langle V\otimes \chi _{i},\chi _{j}\rangle ={\frac {1}{|G|}}\sum _{g\in G}V(g)\chi _{i}(g){\overline {\chi _{j}(g)}}.}

The McKay graph of a finite subgroup of GL ( 2 , C ) {\displaystyle {\text{GL}}(2,\mathbb {C} )} is defined to be the McKay graph of its canonical representation.

For finite subgroups of SL ( 2 , C ) , {\displaystyle {\text{SL}}(2,\mathbb {C} ),} the canonical representation on C 2 {\displaystyle \mathbb {C} ^{2}} is self-dual, so n i j = n j i {\displaystyle n_{ij}=n_{ji}} for all i, j. Thus, the McKay graph of finite subgroups of SL ( 2 , C ) {\displaystyle {\text{SL}}(2,\mathbb {C} )} is undirected.

In fact, by the McKay correspondence, there is a one-to-one correspondence between the finite subgroups of SL ( 2 , C ) {\displaystyle {\text{SL}}(2,\mathbb {C} )} and the extended Coxeter-Dynkin diagrams of type A-D-E.

We define the Cartan matrix cV of V as follows:

c V = ( d δ i j n i j ) i j , {\displaystyle c_{V}=(d\delta _{ij}-n_{ij})_{ij},}

where δij is the Kronecker delta.

Some results

  • If the representation V is faithful, then every irreducible representation is contained in some tensor power V k , {\displaystyle V^{\otimes k},} and the McKay graph of V is connected.
  • The McKay graph of a finite subgroup of SL ( 2 , C ) {\displaystyle {\text{SL}}(2,\mathbb {C} )} has no self-loops, that is, n i i = 0 {\displaystyle n_{ii}=0} for all i.
  • The arrows of the McKay graph of a finite subgroup of SL ( 2 , C ) {\displaystyle {\text{SL}}(2,\mathbb {C} )} are all of weight one.

Examples

  • Suppose G = A × B, and there are canonical irreducible representations cA, cB of A, B respectively. If χ i, i = 1, …, k, are the irreducible representations of A and ψ j, j = 1, …, , are the irreducible representations of B, then
χ i × ψ j 1 i k , 1 j {\displaystyle \chi _{i}\times \psi _{j}\quad 1\leq i\leq k,\,\,1\leq j\leq \ell }
are the irreducible representations of A × B, where χ i × ψ j ( a , b ) = χ i ( a ) ψ j ( b ) , ( a , b ) A × B . {\displaystyle \chi _{i}\times \psi _{j}(a,b)=\chi _{i}(a)\psi _{j}(b),(a,b)\in A\times B.} In this case, we have
( c A × c B ) ( χ i × ψ ) , χ n × ψ p = c A χ k , χ n c B ψ , ψ p . {\displaystyle \langle (c_{A}\times c_{B})\otimes (\chi _{i}\times \psi _{\ell }),\chi _{n}\times \psi _{p}\rangle =\langle c_{A}\otimes \chi _{k},\chi _{n}\rangle \cdot \langle c_{B}\otimes \psi _{\ell },\psi _{p}\rangle .}
Therefore, there is an arrow in the McKay graph of G between χ i × ψ j {\displaystyle \chi _{i}\times \psi _{j}} and χ k × ψ {\displaystyle \chi _{k}\times \psi _{\ell }} if and only if there is an arrow in the McKay graph of A between χi, χk and there is an arrow in the McKay graph of B between ψ j, ψ. In this case, the weight on the arrow in the McKay graph of G is the product of the weights of the two corresponding arrows in the McKay graphs of A and B.
  • Felix Klein proved that the finite subgroups of SL ( 2 , C ) {\displaystyle {\text{SL}}(2,\mathbb {C} )} are the binary polyhedral groups; all are conjugate to subgroups of SU ( 2 , C ) . {\displaystyle {\text{SU}}(2,\mathbb {C} ).} The McKay correspondence states that there is a one-to-one correspondence between the McKay graphs of these binary polyhedral groups and the extended Dynkin diagrams. For example, the binary tetrahedral group T ¯ {\displaystyle {\overline {T}}} is generated by the SU ( 2 , C ) {\displaystyle {\text{SU}}(2,\mathbb {C} )} matrices:
S = ( i 0 0 i ) ,     V = ( 0 i i 0 ) ,     U = 1 2 ( ε ε 3 ε ε 7 ) , {\displaystyle S=\left({\begin{array}{cc}i&0\\0&-i\end{array}}\right),\ \ V=\left({\begin{array}{cc}0&i\\i&0\end{array}}\right),\ \ U={\frac {1}{\sqrt {2}}}\left({\begin{array}{cc}\varepsilon &\varepsilon ^{3}\\\varepsilon &\varepsilon ^{7}\end{array}}\right),}
where ε is a primitive eighth root of unity. In fact, we have
T ¯ = { U k , S U k , V U k , S V U k k = 0 , , 5 } . {\displaystyle {\overline {T}}=\{U^{k},SU^{k},VU^{k},SVU^{k}\mid k=0,\ldots ,5\}.}
The conjugacy classes of T ¯ {\displaystyle {\overline {T}}} are:
C 1 = { U 0 = I } , {\displaystyle C_{1}=\{U^{0}=I\},}
C 2 = { U 3 = I } , {\displaystyle C_{2}=\{U^{3}=-I\},}
C 3 = { ± S , ± V , ± S V } , {\displaystyle C_{3}=\{\pm S,\pm V,\pm SV\},}
C 4 = { U 2 , S U 2 , V U 2 , S V U 2 } , {\displaystyle C_{4}=\{U^{2},SU^{2},VU^{2},SVU^{2}\},}
C 5 = { U , S U , V U , S V U } , {\displaystyle C_{5}=\{-U,SU,VU,SVU\},}
C 6 = { U 2 , S U 2 , V U 2 , S V U 2 } , {\displaystyle C_{6}=\{-U^{2},-SU^{2},-VU^{2},-SVU^{2}\},}
C 7 = { U , S U , V U , S V U } . {\displaystyle C_{7}=\{U,-SU,-VU,-SVU\}.}
The character table of T ¯ {\displaystyle {\overline {T}}} is
Conjugacy Classes C 1 {\displaystyle C_{1}} C 2 {\displaystyle C_{2}} C 3 {\displaystyle C_{3}} C 4 {\displaystyle C_{4}} C 5 {\displaystyle C_{5}} C 6 {\displaystyle C_{6}} C 7 {\displaystyle C_{7}}
χ 1 {\displaystyle \chi _{1}} 1 {\displaystyle 1} 1 {\displaystyle 1} 1 {\displaystyle 1} 1 {\displaystyle 1} 1 {\displaystyle 1} 1 {\displaystyle 1} 1 {\displaystyle 1}
χ 2 {\displaystyle \chi _{2}} 1 {\displaystyle 1} 1 {\displaystyle 1} 1 {\displaystyle 1} ω {\displaystyle \omega } ω 2 {\displaystyle \omega ^{2}} ω {\displaystyle \omega } ω 2 {\displaystyle \omega ^{2}}
χ 3 {\displaystyle \chi _{3}} 1 {\displaystyle 1} 1 {\displaystyle 1} 1 {\displaystyle 1} ω 2 {\displaystyle \omega ^{2}} ω {\displaystyle \omega } ω 2 {\displaystyle \omega ^{2}} ω {\displaystyle \omega }
χ 4 {\displaystyle \chi _{4}} 3 {\displaystyle 3} 3 {\displaystyle 3} 1 {\displaystyle -1} 0 {\displaystyle 0} 0 {\displaystyle 0} 0 {\displaystyle 0} 0 {\displaystyle 0}
c {\displaystyle c} 2 {\displaystyle 2} 2 {\displaystyle -2} 0 {\displaystyle 0} 1 {\displaystyle -1} 1 {\displaystyle -1} 1 {\displaystyle 1} 1 {\displaystyle 1}
χ 5 {\displaystyle \chi _{5}} 2 {\displaystyle 2} 2 {\displaystyle -2} 0 {\displaystyle 0} ω {\displaystyle -\omega } ω 2 {\displaystyle -\omega ^{2}} ω {\displaystyle \omega } ω 2 {\displaystyle \omega ^{2}}
χ 6 {\displaystyle \chi _{6}} 2 {\displaystyle 2} 2 {\displaystyle -2} 0 {\displaystyle 0} ω 2 {\displaystyle -\omega ^{2}} ω {\displaystyle -\omega } ω 2 {\displaystyle \omega ^{2}} ω {\displaystyle \omega }
Here ω = e 2 π i / 3 . {\displaystyle \omega =e^{2\pi i/3}.} The canonical representation V is here denoted by c. Using the inner product, we find that the McKay graph of T ¯ {\displaystyle {\overline {T}}} is the extended Coxeter–Dynkin diagram of type E ~ 6 . {\displaystyle {\tilde {E}}_{6}.}

See also

  • ADE classification
  • Binary tetrahedral group

References

  1. ^ Steinberg, Robert (1985), "Subgroups of S U 2 {\displaystyle SU_{2}} , Dynkin diagrams and affine Coxeter elements", Pacific Journal of Mathematics, 18: 587–598, doi:10.2140/pjm.1985.118.587
  2. ^ McKay, John (1982), "Representations and Coxeter Graphs", "The Geometric Vein", Coxeter Festschrift, Berlin: Springer-Verlag

Further reading

  • Humphreys, James E. (1972), Introduction to Lie Algebras and Representation Theory, Birkhäuser, ISBN 978-0-387-90053-7
  • James, Gordon; Liebeck, Martin (2001), Representations and Characters of Groups (2nd ed.), Cambridge University Press, ISBN 0-521-00392-X
  • Klein, Felix (1884), "Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade", Teubner, Leibniz
  • McKay, John (1980), "Graphs, singularities and finite groups", Proc. Symp. Pure Math., Proceedings of Symposia in Pure Mathematics, 37, Amer. Math. Soc.: 183–186, doi:10.1090/pspum/037/604577, ISBN 9780821814406
  • Riemenschneider, Oswald (2005), McKay correspondence for quotient surface singularities, Singularities in Geometry and Topology, Proceedings of the Trieste Singularity Summer School and Workshop, pp. 483–519