Standard translation

Algorithm in modal logic

In modal logic, standard translation is a logic translation that transforms formulas of modal logic into formulas of first-order logic which capture the meaning of the modal formulas. Standard translation is defined inductively on the structure of the formula. In short, atomic formulas are mapped onto unary predicates and the objects in the first-order language are the accessible worlds. The logical connectives from propositional logic remain untouched and the modal operators are transformed into first-order formulas according to their semantics.

Definition

Standard translation is defined as follows:

  • S T x ( p ) P ( x ) {\displaystyle ST_{x}(p)\equiv P(x)} , where p {\displaystyle p} is an atomic formula; P(x) is true when p {\displaystyle p} holds in world x {\displaystyle x} .
  • S T x ( ) {\displaystyle ST_{x}(\top )\equiv \top }
  • S T x ( ) {\displaystyle ST_{x}(\bot )\equiv \bot }
  • S T x ( ¬ φ ) ¬ S T x ( φ ) {\displaystyle ST_{x}(\neg \varphi )\equiv \neg ST_{x}(\varphi )}
  • S T x ( φ ψ ) S T x ( φ ) S T x ( ψ ) {\displaystyle ST_{x}(\varphi \wedge \psi )\equiv ST_{x}(\varphi )\wedge ST_{x}(\psi )}
  • S T x ( φ ψ ) S T x ( φ ) S T x ( ψ ) {\displaystyle ST_{x}(\varphi \vee \psi )\equiv ST_{x}(\varphi )\vee ST_{x}(\psi )}
  • S T x ( φ ψ ) S T x ( φ ) S T x ( ψ ) {\displaystyle ST_{x}(\varphi \rightarrow \psi )\equiv ST_{x}(\varphi )\rightarrow ST_{x}(\psi )}
  • S T x ( m φ ) y ( R m ( x , y ) S T y ( φ ) ) {\displaystyle ST_{x}(\Diamond _{m}\varphi )\equiv \exists y(R_{m}(x,y)\wedge ST_{y}(\varphi ))}
  • S T x ( m φ ) y ( R m ( x , y ) S T y ( φ ) ) {\displaystyle ST_{x}(\Box _{m}\varphi )\equiv \forall y(R_{m}(x,y)\rightarrow ST_{y}(\varphi ))}

In the above, x {\displaystyle x} is the world from which the formula is evaluated. Initially, a free variable x {\displaystyle x} is used and whenever a modal operator needs to be translated, a fresh variable is introduced to indicate that the remainder of the formula needs to be evaluated from that world. Here, the subscript m {\displaystyle m} refers to the accessibility relation that should be used: normally, {\displaystyle \Box } and {\displaystyle \Diamond } refer to a relation R {\displaystyle R} of the Kripke model but more than one accessibility relation can exist (a multimodal logic) in which case subscripts are used. For example, a {\displaystyle \Box _{a}} and a {\displaystyle \Diamond _{a}} refer to an accessibility relation R a {\displaystyle R_{a}} and b {\displaystyle \Box _{b}} and b {\displaystyle \Diamond _{b}} to R b {\displaystyle R_{b}} in the model. Alternatively, it can also be placed inside the modal symbol.

Example

As an example, when standard translation is applied to p {\displaystyle \Box \Box p} , we expand the outer box to get

y ( R ( x , y ) S T y ( p ) ) {\displaystyle \forall y(R(x,y)\rightarrow ST_{y}(\Box p))}

meaning that we have now moved from x {\displaystyle x} to an accessible world y {\displaystyle y} and we now evaluate the remainder of the formula, p {\displaystyle \Box p} , in each of those accessible worlds.

The whole standard translation of this example becomes

y ( R ( x , y ) ( z ( R ( y , z ) P ( z ) ) ) ) {\displaystyle \forall y(R(x,y)\rightarrow (\forall z(R(y,z)\rightarrow P(z))))}

which precisely captures the semantics of two boxes in modal logic. The formula p {\displaystyle \Box \Box p} holds in x {\displaystyle x} when for all accessible worlds y {\displaystyle y} from x {\displaystyle x} and for all accessible worlds z {\displaystyle z} from y {\displaystyle y} , the predicate P {\displaystyle P} is true for z {\displaystyle z} . Note that the formula is also true when no such accessible worlds exist. In case x {\displaystyle x} has no accessible worlds then R ( x , y ) {\displaystyle R(x,y)} is false but the whole formula is vacuously true: an implication is also true when the antecedent is false.

Standard translation and modal depth

The modal depth of a formula also becomes apparent in the translation to first-order logic. When the modal depth of a formula is k, then the first-order logic formula contains a 'chain' of k transitions from the starting world x {\displaystyle x} . The worlds are 'chained' in the sense that these worlds are visited by going from accessible to accessible world. Informally, the number of transitions in the 'longest chain' of transitions in the first-order formula is the modal depth of the formula.

The modal depth of the formula used in the example above is two. The first-order formula indicates that the transitions from x {\displaystyle x} to y {\displaystyle y} and from y {\displaystyle y} to z {\displaystyle z} are needed to verify the validity of the formula. This is also the modal depth of the formula as each modal operator increases the modal depth by one.

References

  • Patrick Blackburn and Johan van Benthem (1988), Modal Logic: A Semantic Perspective.