Daftar transformasi koordinat

Daftar transformasi koordinat berikut memuat transformasi sistem-sistem koordinat yang paling umum digunakan.

2-Dimensi

Diketahui (x, y) pada sistem koordinat Kartesius baku, serta r dan θ pada sistem koordinat polar baku.

Dari koordinat polar ke koordinat Kartesius

x = r cos θ {\displaystyle x=r\,\cos \theta \quad }
y = r sin θ {\displaystyle y=r\,\sin \theta \quad }
( x , y ) ( r , θ ) = ( cos θ r sin θ sin θ r cos θ ) {\displaystyle {\frac {\partial (x,y)}{\partial (r,\theta )}}={\begin{pmatrix}\cos \theta &-r\,\sin \theta \\\sin \theta &r\,\cos \theta \end{pmatrix}}}
det ( x , y ) ( r , θ ) = r {\displaystyle \det {\frac {\partial (x,y)}{\partial (r,\theta )}}=r}

Dari koordinat Kartesius ke koordinat polar

r = x 2 + y 2 {\displaystyle r={\sqrt {x^{2}+y^{2}}}}
θ = arctan | y x | {\displaystyle \theta ^{\prime }=\arctan \left|{\frac {y}{x}}\right|}

Catatan: penghitungan θ {\displaystyle \theta ^{\prime }} menghasilkan sudut resultan pada kuadran pertama ( 0 < θ < π 2 {\displaystyle 0<\theta <{\frac {\pi }{2}}} ). Untuk menghitung θ {\displaystyle \theta } , harus dirujuk pada koordinat Kartesius semua, tentukan kuadran di mana θ {\displaystyle \theta } terletak (misalnya (3,-3) [Kartesius] terletak pada kuadran 4 atau "QIV"), maka gunakan persamaan berikut untuk menghitung θ {\displaystyle \theta } :

Untuk θ {\displaystyle \theta ^{\prime }} in QI:
θ = θ {\displaystyle \theta =\theta ^{\prime }}
Untuk θ {\displaystyle \theta ^{\prime }} in QII:
θ = π θ {\displaystyle \theta =\pi -\theta ^{\prime }}
Untuk θ {\displaystyle \theta ^{\prime }} in QIII:
θ = π + θ {\displaystyle \theta =\pi +\theta ^{\prime }}
Untuk θ {\displaystyle \theta ^{\prime }} in QIV:
θ = 2 π θ {\displaystyle \theta =2\pi -\theta ^{\prime }}

Nilai θ {\displaystyle \theta } harus dihitung dengan cara ini karena semua nilai θ {\displaystyle \theta } , tan θ {\displaystyle \tan \theta } hanya didefinisikan untuk π 2 < θ < + π 2 {\displaystyle -{\frac {\pi }{2}}<\theta <+{\frac {\pi }{2}}} , dan bersifat periodik (dengan periode π {\displaystyle \pi } ). Artinya fungsi invers hanya menghasilkan nilai dalam domain fungsi itu, tetapi terbatas pada satu periode saja. Jadi, rentang fungsi invers hanyalah setengah lingkaran.

Perhatikan bahwa dapat pula digunakan

r = x 2 + y 2 {\displaystyle r={\sqrt {x^{2}+y^{2}}}}
θ = 2 arctan y x + r {\displaystyle \theta ^{\prime }=2\arctan {\frac {y}{x+r}}}

Dari koordinat log-polar ke koordinat Kartesius

{ x = e ρ cos θ , y = e ρ sin θ . {\displaystyle {\begin{cases}x=e^{\rho }\cos \theta ,\\y=e^{\rho }\sin \theta .\end{cases}}}

Dengan menggunakan bilangan kompleks ( x , y ) = x + i y {\displaystyle (x,y)=x+iy'} , transformasi dapat ditulis sebagai

x + i y = e ρ + i θ {\displaystyle x+iy=e^{\rho +i\theta }\,}

yaitu diberikan oleh fungsi eksponensial kompleks.

Dari koordinat Kartesius ke koordinat log-polar

{ ρ = log x 2 + y 2 , θ = arctan y x . {\displaystyle {\begin{cases}\rho =\log {\sqrt {x^{2}+y^{2}}},\\\theta =\arctan {\frac {y}{x}}.\end{cases}}}

Dari koordinat bipolar ke koordinat Kartesius

x = a   sinh τ cosh τ cos σ {\displaystyle x=a\ {\frac {\sinh \tau }{\cosh \tau -\cos \sigma }}}
y = a   sin σ cosh τ cos σ {\displaystyle y=a\ {\frac {\sin \sigma }{\cosh \tau -\cos \sigma }}}

Dari koordinat two-center bipolar ke koordinat Kartesius

x = r 1 2 r 2 2 4 c {\displaystyle x={\frac {r_{1}^{2}-r_{2}^{2}}{4c}}}
y = ± 1 4 c 16 c 2 r 1 2 ( r 1 2 r 2 2 + 4 c 2 ) 2 {\displaystyle y=\pm {\frac {1}{4c}}{\sqrt {16c^{2}r_{1}^{2}-(r_{1}^{2}-r_{2}^{2}+4c^{2})^{2}}}} [1]

Dari koordinat two-center bipolar ke koordinat polar

r = r 1 2 + r 2 2 2 c 2 2 {\displaystyle r={\sqrt {\frac {r_{1}^{2}+r_{2}^{2}-2c^{2}}{2}}}}
θ = arctan [ 8 c 2 ( r 1 2 + r 2 2 2 c 2 ) r 1 2 r 2 2 1 ] {\displaystyle \theta =\arctan \left[{\sqrt {{\frac {8c^{2}(r_{1}^{2}+r_{2}^{2}-2c^{2})}{r_{1}^{2}-r_{2}^{2}}}-1}}\right]}

di mana 2c adalah jarak antara kutub-kutub.

Dari persamaan Cesàro ke koordinat Kartesius

x = cos [ κ ( s ) d s ] d s {\displaystyle x=\int \cos \left[\int \kappa (s)\,ds\right]ds}
y = sin [ κ ( s ) d s ] d s {\displaystyle y=\int \sin \left[\int \kappa (s)\,ds\right]ds}

Dari koordinat Kartesius ke panjang dan kurva Arc

κ = x y y x ( x 2 + y 2 ) 3 / 2 {\displaystyle \kappa ={\frac {x'y''-y'x''}{(x'^{2}+y'^{2})^{3/2}}}}

s = a t x 2 + y 2 d t {\displaystyle s=\int _{a}^{t}{\sqrt {x'^{2}+y'^{2}}}\,dt}

Dari koordinat polar ke panjang dan kurva Arc

κ = r 2 + 2 r 2 r r ( r 2 + r 2 ) 3 / 2 {\displaystyle \kappa ={\frac {r^{2}+2r'^{2}-rr''}{(r^{2}+r'^{2})^{3/2}}}}

s = a ϕ 1 + y 2 d ϕ {\displaystyle s=\int _{a}^{\phi }{\sqrt {1+y'^{2}}}\,d\phi }

3-Dimensi

Diketahui (x, y, z) pada sistem koordinat Kartesius baku, dan (ρ, θ, φ) pada koordinat spherical, dengan sudut θ diukur dari aksis +Z axis. Sebagaimana φ mempunyai rentang 360° pertimbangan yang sama dengan koordinat polar (2 dimensi) diterapkan bilamana diambil suatu arctangen. θ mempunyai rentang 180°, dari 0° ke 180°, dan tidak bermasalah jika dihitung dari suatu arckosinus, tetapi perhatikan untuk suatu arctangen. Jika, dalam definisi alternatif, θ dipilih untuk rentang dari −90° ke +90°, dengan arah yang berlawanan dibandingkan definisi sebelumnya, maka dapat dihitung secara unik dari suatu arcsinus, tetapi hati-hati dengan arckotangen. Dalam kasus ini semua rumus berikut semua argumen θ harus ditukar sinus dan kosinus-nya, dan sebagai turunan juga harus ditukar tanda plus dan minusnya.

Semua pembagian oleh nol menghasilkan kasus-kasus khusus dengan arah di sepanjang aksis-aksis utama dan dalam praktik dapat dipecahkan dengan mudah melalui observasi.

Ke koordinat Kartesius

Dari koordinat spherical

x = ρ sin θ cos ϕ {\displaystyle {x}=\rho \,\sin \theta \,\cos \phi \quad }
y = ρ sin θ sin ϕ {\displaystyle {y}=\rho \,\sin \theta \,\sin \phi \quad }
z = ρ cos θ {\displaystyle {z}=\rho \,\cos \theta \quad }
( x , y , z ) ( ρ , θ , ϕ ) = ( sin θ cos ϕ ρ cos θ cos ϕ ρ sin θ sin ϕ sin θ sin ϕ ρ cos θ sin ϕ ρ sin θ cos ϕ cos θ ρ sin θ 0 ) {\displaystyle {\frac {\partial (x,y,z)}{\partial (\rho ,\theta ,\phi )}}={\begin{pmatrix}\sin \theta \cos \phi &\rho \cos \theta \cos \phi &-\rho \sin \theta \sin \phi \\\sin \theta \sin \phi &\rho \cos \theta \sin \phi &\rho \sin \theta \cos \phi \\\cos \theta &-\rho \sin \theta &0\end{pmatrix}}}

sehingga untuk volume elemen:

d x d y d z = det ( x , y , z ) ( ρ , θ , ϕ ) d ρ d θ d ϕ = ρ 2 sin θ d ρ d θ d ϕ {\displaystyle dx\;dy\;dz=\det {\frac {\partial (x,y,z)}{\partial (\rho ,\theta ,\phi )}}d\rho \;d\theta \;d\phi =\rho ^{2}\sin \theta \;d\rho \;d\theta \;d\phi \;}

Dari koordinat cylindrical

x = r cos θ {\displaystyle {x}={r}\,\cos \theta }
y = r sin θ {\displaystyle {y}={r}\,\sin \theta }
z = h {\displaystyle {z}={h}\,}
( x , y , z ) ( r , θ , h ) = ( cos θ r sin θ 0 sin θ r cos θ 0 0 0 1 ) {\displaystyle {\frac {\partial (x,y,z)}{\partial (r,\theta ,h)}}={\begin{pmatrix}\cos \theta &-r\sin \theta &0\\\sin \theta &r\cos \theta &0\\0&0&1\end{pmatrix}}}

sehingga untuk volume elemen:

d x d y d z = det ( x , y , z ) ( r , θ , h ) d r d θ d h = r d r d θ d h {\displaystyle dx\;dy\;dz=\det {\frac {\partial (x,y,z)}{\partial (r,\theta ,h)}}dr\;d\theta \;dh={r}\;dr\;d\theta \;dh\;}

Ke koordinat Spherical

Dari koordinat Kartesius

ρ = x 2 + y 2 + z 2 {\displaystyle {\rho }={\sqrt {x^{2}+y^{2}+z^{2}}}}
ϕ = arctan ( y x ) = arccos ( x x 2 + y 2 ) = arcsin ( y x 2 + y 2 ) {\displaystyle {\phi }=\arctan \left({\frac {y}{x}}\right)=\arccos \left({\frac {x}{\sqrt {x^{2}+y^{2}}}}\right)=\arcsin \left({\frac {y}{\sqrt {x^{2}+y^{2}}}}\right)}
θ = arctan ( x 2 + y 2 z ) = arccos ( z x 2 + y 2 + z 2 ) {\displaystyle {\theta }=\arctan \left({\frac {\sqrt {x^{2}+y^{2}}}{z}}\right)=\arccos \left({\frac {z}{\sqrt {x^{2}+y^{2}+z^{2}}}}\right)}
( ρ , θ , ϕ ) ( x , y , z ) = ( x ρ y ρ z ρ x z ρ 2 x 2 + y 2 y z ρ 2 x 2 + y 2 x 2 + y 2 ρ 2 y x 2 + y 2 x x 2 + y 2 0 ) {\displaystyle {\frac {\partial (\rho ,\theta ,\phi )}{\partial (x,y,z)}}={\begin{pmatrix}{\frac {x}{\rho }}&{\frac {y}{\rho }}&{\frac {z}{\rho }}\\{\frac {xz}{\rho ^{2}{\sqrt {x^{2}+y^{2}}}}}&{\frac {yz}{\rho ^{2}{\sqrt {x^{2}+y^{2}}}}}&-{\frac {\sqrt {x^{2}+y^{2}}}{\rho ^{2}}}\\{\frac {-y}{x^{2}+y^{2}}}&{\frac {x}{x^{2}+y^{2}}}&0\\\end{pmatrix}}}

sehingga untuk volume elemen:

d ρ   d θ   d ϕ = det ( ρ , θ , ϕ ) ( x , y , z ) d x   d y   d z = 1 x 2 + y 2 x 2 + y 2 + z 2 d x   d y   d z {\displaystyle d\rho \ d\theta \ d\phi =\det {\frac {\partial (\rho ,\theta ,\phi )}{\partial (x,y,z)}}dx\ dy\ dz={\frac {1}{{\sqrt {x^{2}+y^{2}}}{\sqrt {x^{2}+y^{2}+z^{2}}}}}dx\ dy\ dz}

Dari koordinat cylindrical

ρ = r 2 + h 2 {\displaystyle {\rho }={\sqrt {r^{2}+h^{2}}}}
ϕ = ϕ {\displaystyle {\phi }=\phi \quad }
θ = arctan r h {\displaystyle {\theta }=\arctan {\frac {r}{h}}}
( ρ , θ , ϕ ) ( r , ϕ , h ) = ( r r 2 + h 2 0 h r 2 + h 2 r r 2 + h 2 0 h r 2 + h 2 0 1 0 ) {\displaystyle {\frac {\partial (\rho ,\theta ,\phi )}{\partial (r,\phi ,h)}}={\begin{pmatrix}{\frac {r}{\sqrt {r^{2}+h^{2}}}}&0&{\frac {h}{\sqrt {r^{2}+h^{2}}}}\\{\frac {-r}{r^{2}+h^{2}}}&0&{\frac {h}{r^{2}+h^{2}}}\\0&1&0\end{pmatrix}}}
det ( ρ , θ , ϕ ) ( r , ϕ , h ) = 1 r 2 + h 2 {\displaystyle \det {\frac {\partial (\rho ,\theta ,\phi )}{\partial (r,\phi ,h)}}={\frac {1}{\sqrt {r^{2}+h^{2}}}}}

Ke koordinat cylindrical

Dari koordinat Kartesius

r = x 2 + y 2 {\displaystyle r={\sqrt {x^{2}+y^{2}}}}
θ = { 0 if  x = 0  and  y = 0 arcsin ( y r ) if  x 0 arcsin ( y r ) + π if  x < 0 {\displaystyle \theta ={\begin{cases}0&{\mbox{if }}x=0{\mbox{ and }}y=0\\\arcsin({\frac {y}{r}})&{\mbox{if }}x\geq 0\\-\arcsin({\frac {y}{r}})+\pi &{\mbox{if }}x<0\\\end{cases}}}
h = z {\displaystyle h=z\quad }

Note that many computer systems may offer a more concise function for computing θ {\displaystyle \theta } , such as atan2(y,x) in the C language.

( r , θ , h ) ( x , y , z ) = ( x x 2 + y 2 y x 2 + y 2 0 y x 2 + y 2 x x 2 + y 2 0 0 0 1 ) {\displaystyle {\frac {\partial (r,\theta ,h)}{\partial (x,y,z)}}={\begin{pmatrix}{\frac {x}{\sqrt {x^{2}+y^{2}}}}&{\frac {y}{\sqrt {x^{2}+y^{2}}}}&0\\{\frac {-y}{x^{2}+y^{2}}}&{\frac {x}{x^{2}+y^{2}}}&0\\0&0&1\end{pmatrix}}}

Dari koordinat spherical

r = ρ sin ϕ {\displaystyle r=\rho \sin \phi \,}
θ = θ {\displaystyle \theta =\theta \,}
h = ρ cos ϕ {\displaystyle h=\rho \cos \phi \,}
( r , θ , h ) ( ρ , θ , ϕ ) = ( sin ϕ 0 ρ cos ϕ 0 1 0 cos ϕ 0 ρ sin ϕ ) {\displaystyle {\frac {\partial (r,\theta ,h)}{\partial (\rho ,\theta ,\phi )}}={\begin{pmatrix}\sin \phi &0&\rho \cos \phi \\0&1&0\\\cos \phi &0&-\rho \sin \phi \end{pmatrix}}}
det ( r , θ , h ) ( ρ , θ , ϕ ) = ρ {\displaystyle \det {\frac {\partial (r,\theta ,h)}{\partial (\rho ,\theta ,\phi )}}=-\rho }

Dari koordinat Kartesius ke panjang, kurva, dan torsi Arc

s = 0 t x 2 + y 2 + z 2 d t {\displaystyle s=\int _{0}^{t}{\sqrt {x'^{2}+y'^{2}+z'^{2}}}\,dt}
κ = ( z y y z ) 2 + ( x z z x ) 2 + ( y x x y ) 2 ( x 2 + y 2 + z 2 ) 3 / 2 {\displaystyle \kappa ={\frac {\sqrt {(z''y'-y''z')^{2}+(x''z'-z''x')^{2}+(y''x'-x''y')^{2}}}{(x'^{2}+y'^{2}+z'^{2})^{3/2}}}}
τ = z ( x y y x ) + z ( x y x y ) + z ( x y x y ) ( x 2 + y 2 + z 2 ) ( x 2 + y 2 + z 2 ) {\displaystyle \tau ={\frac {z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}{(x'^{2}+y'^{2}+z'^{2})(x''^{2}+y''^{2}+z''^{2})}}}

Referensi

  1. ^ Weisstein, Eric W.. "Bipolar Coordinates." Treasure Troves. 26 May 1999. Sociology and Anthropology China. 14 February 2007 [1] Diarsipkan 2007-12-12 di Wayback Machine.