Violdelfin

Violdelfin
Identifikacija
CAS registarski broj 126417-59-2 DaY
PubChem[1][2] 3083066
ChemSpider[3] 2340380 DaY
Jmol-3D slike Slika 1
SMILES

CC1OC(OCC2OC(Oc3cc4c(O)cc(OC5OC(COC(=O)c6ccc(OC7OC(COC(=O)c8ccc(O)cc8)C(O)C(O)C7O)cc6)C(O)C(O)C5O)cc4[o+]c3c9cc(O)c(O)c(O)c9)C(O)C(O)C2O)C(O)C(O)C1O

InChI

InChI=1S/C53H58O30/c1-18-34(58)39(63)43(67)50(76-18)75-17-33-38(62)42(66)46(70)53(83-33)80-30-14-25-26(55)12-24(13-29(25)79-47(30)21-10-27(56)35(59)28(57)11-21)78-52-45(69)41(65)37(61)32(82-52)16-74-49(72)20-4-8-23(9-5-20)77-51-44(68)40(64)36(60)31(81-51)15-73-48(71)19-2-6-22(54)7-3-19/h2-14,18,31-34,36-46,50-53,58,60-70H,15-17H2,1H3,(H4-,54,55,56,57,59,71)/p+1 DaY
Kod: YODABPUZPVYDEF-UHFFFAOYSA-O DaY


InChI=1S/C53H58O30/c1-18-34(58)39(63)43(67)50(76-18)75-17-33-38(62)42(66)46(70)53(83-33)80-30-14-25-26(55)12-24(13-29(25)79-47(30)21-10-27(56)35(59)28(57)11-21)78-52-45(69)41(65)37(61)32(82-52)16-74-49(72)20-4-8-23(9-5-20)77-51-44(68)40(64)36(60)31(81-51)15-73-48(71)19-2-6-22(54)7-3-19/h2-14,18,31-34,36-46,50-53,58,60-70H,15-17H2,1H3,(H4-,54,55,56,57,59,71)/p+1/t18-,31+,32+,33+,34-,36+,37+,38+,39+,40-,41-,42-,43+,44+,45+,46+,50+,51+,52+,53+/m0/s1

Svojstva
Molekulska formula C53H59O30
Molarna masa 1176.02 g mol−1



Ukoliko nije drugačije napomenuto, podaci se odnose na standardno stanje (25 °C, 100 kPa) materijala

Infobox references

Violdelfin je organsko jedinjenje, koje sadrži 53 atoma ugljenika i ima molekulsku masu od 1176,018 Da.

Osobine

Osobina Vrednost
Broj akceptora vodonika 29
Broj donora vodonika 17
Broj rotacionih veza 18
Particioni koeficijent[4] (ALogP) -0,2
Rastvorljivost[5] (logS, log(mol/L)) -4,5
Polarna površina[6] (PSA, Å2) 481,6

Reference

  1. Li Q, Cheng T, Wang Y, Bryant SH (2010). „PubChem as a public resource for drug discovery.”. Drug Discov Today 15 (23-24): 1052-7. DOI:10.1016/j.drudis.2010.10.003. PMID 20970519.  edit
  2. Evan E. Bolton, Yanli Wang, Paul A. Thiessen, Stephen H. Bryant (2008). „Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities”. Annual Reports in Computational Chemistry 4: 217-241. DOI:10.1016/S1574-1400(08)00012-1. 
  3. Hettne KM, Williams AJ, van Mulligen EM, Kleinjans J, Tkachenko V, Kors JA. (2010). „Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining”. J Cheminform 2 (1): 3. DOI:10.1186/1758-2946-2-3. PMID 20331846.  edit
  4. Ghose, A.K., Viswanadhan V.N., and Wendoloski, J.J. (1998). „Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragment Methods: An Analysis of AlogP and CLogP Methods”. J. Phys. Chem. A 102: 3762-3772. DOI:10.1021/jp980230o. 
  5. Tetko IV, Tanchuk VY, Kasheva TN, Villa AE. (2001). „Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices”. Chem Inf. Comput. Sci. 41: 1488-1493. DOI:10.1021/ci000392t. PMID 11749573. 
  6. Ertl P., Rohde B., Selzer P. (2000). „Fast calculation of molecular polar surface area as a sum of fragment based contributions and its application to the prediction of drug transport properties”. J. Med. Chem. 43: 3714-3717. DOI:10.1021/jm000942e. PMID 11020286. 

Literatura

  • Clayden Jonathan, Nick Greeves, Stuart Warren, Peter Wothers (2001). Organic chemistry. Oxford, Oxfordshire: Oxford University Press. ISBN 0-19-850346-6. 
  • Smith, Michael B.; March, Jerry (2007). Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th izd.). New York: Wiley-Interscience. ISBN 0-471-72091-7. 
  • Katritzky A.R., Pozharskii A.F. (2000). Handbook of Heterocyclic Chemistry. Academic Press. ISBN 0080429882. 

Spoljašnje veze

Portal Hemija
Violdelfin na Wikimedijinoj ostavi
  • Violdelphin