Y-Δ变换

Δ形电路和Y形电路

Y-Δ变换或稱為星角變換,是一种把Y形电路转换成等效的Δ形电路,或把Δ形电路转换成等效的Y形电路的方法。它可以用来简化电路的分析。这一变换理论是由亚瑟·肯内利英语Arthur Kennelly於1899年发表。[1]

基本的Y-Δ变换

设R1、R2、和R3分别是Y形电路中从N1、N2、N3到中点的阻抗,Ra、Rb、Rc分别是Δ形电路中N1与N3、N1与N2、N2与N3之间的阻抗。希望把Y形电路换成Δ形电路,或把Δ形电路换成Y形电路后,任意两个端点之间的阻抗仍然与原来的电路相等。

把Δ形电路变换成Y形电路

变换的基本思路是用 R {\displaystyle R'} R {\displaystyle R''} 计算Y形电路端点的阻抗 R y {\displaystyle R_{y}} ,其中 R {\displaystyle R'} R {\displaystyle R''} 是Δ形电路中对应节点到邻接节点间的阻抗:

R y = R R R Δ {\displaystyle R_{y}={\frac {R'R''}{\sum R_{\Delta }}}}

其中 R Δ {\displaystyle R_{\Delta }} 是Δ形电路的阻抗之和。具体公式如下:

R 1 = R a R b R a + R b + R c {\displaystyle R_{1}={\frac {R_{a}R_{b}}{R_{a}+R_{b}+R_{c}}}}
R 2 = R b R c R a + R b + R c {\displaystyle R_{2}={\frac {R_{b}R_{c}}{R_{a}+R_{b}+R_{c}}}}
R 3 = R a R c R a + R b + R c {\displaystyle R_{3}={\frac {R_{a}R_{c}}{R_{a}+R_{b}+R_{c}}}}

口訣为 Y形阻抗 = Δ形同側相邻阻抗乘积 / Δ形阻抗之和

把Y形电路变换成Δ形电路

变换的基本思路是计算Δ形电路的 R Δ {\displaystyle R_{\Delta }}

R Δ = R P R o p p o s i t e {\displaystyle R_{\Delta }={\frac {R_{P}}{R_{\mathrm {opposite} }}}}

其中 R P = R 1 R 2 + R 2 R 3 + R 3 R 1 {\displaystyle R_{P}=R_{1}R_{2}+R_{2}R_{3}+R_{3}R_{1}} 是Y形电路中的阻抗两两相乘之和, R o p p o s i t e {\displaystyle R_{\mathrm {opposite} }} R Δ {\displaystyle R_{\Delta }} 所在支路对侧的端点在Y形电路中对应端点的阻抗。每一支路的阻抗计算公式为:

R a = R 1 R 2 + R 2 R 3 + R 3 R 1 R 2 {\displaystyle R_{a}={\frac {R_{1}R_{2}+R_{2}R_{3}+R_{3}R_{1}}{R_{2}}}}
R b = R 1 R 2 + R 2 R 3 + R 3 R 1 R 3 {\displaystyle R_{b}={\frac {R_{1}R_{2}+R_{2}R_{3}+R_{3}R_{1}}{R_{3}}}}
R c = R 1 R 2 + R 2 R 3 + R 3 R 1 R 1 {\displaystyle R_{c}={\frac {R_{1}R_{2}+R_{2}R_{3}+R_{3}R_{1}}{R_{1}}}}

口訣为 Δ形阻抗 = Y形阻抗两两相乘之和 / Y形对側端点阻抗

图论

图论中,Y-Δ变换表示将一个图的Y形子图用等价的Δ形子图代替。变换後的边数不变,但顶点数和回路数会变化。如果这两个图可以通过一系列的Y-Δ变换互相变换得到,那么就可以成这两个图Y-Δ等价。例如,佩特森圖就是一个Y-Δ等价类

推导

Δ形负载到Y形负载的变换方程

要将Δ形负载{ R a , R b , R c {\displaystyle R_{a},R_{b},R_{c}} }变换成Y形负载{ R 1 , R 2 , R 3 {\displaystyle R_{1},R_{2},R_{3}} },需要比较二者对应节点的阻抗。要计算两种接法的阻抗,需要将电路中的一个节点断开。

Δ形电路中N3断开後,N1N2间的阻抗为

R Δ ( N 1 , N 2 ) = R b ( R a + R c ) = 1 1 R b + 1 R a + R c = R b ( R a + R c ) R a + R b + R c . {\displaystyle {\begin{aligned}R_{\Delta }(N_{1},N_{2})&=R_{b}\parallel (R_{a}+R_{c})\\[8pt]&={\frac {1}{{\frac {1}{R_{b}}}+{\frac {1}{R_{a}+R_{c}}}}}\\[8pt]&={\frac {R_{b}(R_{a}+R_{c})}{R_{a}+R_{b}+R_{c}}}.\end{aligned}}}

将{ R a , R b , R c {\displaystyle R_{a},R_{b},R_{c}} }之和用 R T {\displaystyle R_{T}} 表示以简化方程:

R T = R a + R b + R c {\displaystyle R_{T}=R_{a}+R_{b}+R_{c}}

得到

R Δ ( N 1 , N 2 ) = R b ( R a + R c ) R T {\displaystyle R_{\Delta }(N_{1},N_{2})={\frac {R_{b}(R_{a}+R_{c})}{R_{T}}}}

Y形电路中N12的对应阻抗为

R Y ( N 1 , N 2 ) = R 1 + R 2 {\displaystyle R_{Y}(N_{1},N_{2})=R_{1}+R_{2}}

由以上两式得到:

R 1 + R 2 = R b ( R a + R c ) R T {\displaystyle R_{1}+R_{2}={\frac {R_{b}(R_{a}+R_{c})}{R_{T}}}}   (1)

同理,对於 R ( N 2 , N 3 ) {\displaystyle R(N_{2},N_{3})} R ( N 1 , N 3 ) {\displaystyle R(N_{1},N_{3})} ,也分别有

R 2 + R 3 = R c ( R a + R b ) R T {\displaystyle R_{2}+R_{3}={\frac {R_{c}(R_{a}+R_{b})}{R_{T}}}}   (2)


R 1 + R 3 = R a ( R b + R c ) R T . {\displaystyle R_{1}+R_{3}={\frac {R_{a}(R_{b}+R_{c})}{R_{T}}}.}   (3)

由此,{ R 1 , R 2 , R 3 {\displaystyle R_{1},R_{2},R_{3}} }的值可以由以上式子的线性组合(相加或相减)求出。

例如,将式(1)和式(3)相加,然後减去式(2)会得到

R 1 + R 2 + R 1 + R 3 R 2 R 3 = R b ( R a + R c ) R T + R a ( R b + R c ) R T R c ( R a + R b ) R T {\displaystyle R_{1}+R_{2}+R_{1}+R_{3}-R_{2}-R_{3}={\frac {R_{b}(R_{a}+R_{c})}{R_{T}}}+{\frac {R_{a}(R_{b}+R_{c})}{R_{T}}}-{\frac {R_{c}(R_{a}+R_{b})}{R_{T}}}}
2 R 1 = 2 R b R a R T {\displaystyle 2R_{1}={\frac {2R_{b}R_{a}}{R_{T}}}}

於是

R 1 = R b R a R T . {\displaystyle R_{1}={\frac {R_{b}R_{a}}{R_{T}}}.}

其中 R T = R a + R b + R c {\displaystyle R_{T}=R_{a}+R_{b}+R_{c}}

求出所有的阻抗值如下:

R 1 = R b R a R T {\displaystyle R_{1}={\frac {R_{b}R_{a}}{R_{T}}}} (4)


R 2 = R b R c R T {\displaystyle R_{2}={\frac {R_{b}R_{c}}{R_{T}}}} (5)


R 3 = R a R c R T {\displaystyle R_{3}={\frac {R_{a}R_{c}}{R_{T}}}} (6)

Y形负载到Δ形负载的变换方程

R T = R a + R b + R c {\displaystyle R_{T}=R_{a}+R_{b}+R_{c}} .

则Δ形电路到Y形电路的变换方程变为

R 1 = R a R b R T {\displaystyle R_{1}={\frac {R_{a}R_{b}}{R_{T}}}}   (1)


R 2 = R b R c R T {\displaystyle R_{2}={\frac {R_{b}R_{c}}{R_{T}}}}   (2)


R 3 = R a R c R T . {\displaystyle R_{3}={\frac {R_{a}R_{c}}{R_{T}}}.}   (3)

将以上式子两两相乘得到

R 1 R 2 = R a R b 2 R c R T 2 {\displaystyle R_{1}R_{2}={\frac {R_{a}R_{b}^{2}R_{c}}{R_{T}^{2}}}}   (4)


R 1 R 3 = R a 2 R b R c R T 2 {\displaystyle R_{1}R_{3}={\frac {R_{a}^{2}R_{b}R_{c}}{R_{T}^{2}}}}   (5)


R 2 R 3 = R a R b R c 2 R T 2 {\displaystyle R_{2}R_{3}={\frac {R_{a}R_{b}R_{c}^{2}}{R_{T}^{2}}}}   (6)

上式之和为

R 1 R 2 + R 1 R 3 + R 2 R 3 = R a R b 2 R c + R a 2 R b R c + R a R b R c 2 R T 2 {\displaystyle R_{1}R_{2}+R_{1}R_{3}+R_{2}R_{3}={\frac {R_{a}R_{b}^{2}R_{c}+R_{a}^{2}R_{b}R_{c}+R_{a}R_{b}R_{c}^{2}}{R_{T}^{2}}}}   (7)

将右侧式子中的公因式 R a R b R c {\displaystyle R_{a}R_{b}R_{c}} 提出,约去分子中的 R T {\displaystyle R_{T}} 和分母中的一个 R T {\displaystyle R_{T}} 後得到

R 1 R 2 + R 1 R 3 + R 2 R 3 = ( R a R b R c ) ( R a + R b + R c ) R T 2 {\displaystyle R_{1}R_{2}+R_{1}R_{3}+R_{2}R_{3}={\frac {(R_{a}R_{b}R_{c})(R_{a}+R_{b}+R_{c})}{R_{T}^{2}}}}
R 1 R 2 + R 1 R 3 + R 2 R 3 = R a R b R c R T {\displaystyle R_{1}R_{2}+R_{1}R_{3}+R_{2}R_{3}={\frac {R_{a}R_{b}R_{c}}{R_{T}}}} (8)

注意式(8)和式{(1),(2),(3)}的相似性,

将式(8)除以式(1)得到

R 1 R 2 + R 1 R 3 + R 2 R 3 R 1 = R a R b R c R T R T R a R b , {\displaystyle {\frac {R_{1}R_{2}+R_{1}R_{3}+R_{2}R_{3}}{R_{1}}}={\frac {R_{a}R_{b}R_{c}}{R_{T}}}{\frac {R_{T}}{R_{a}R_{b}}},}
R 1 R 2 + R 1 R 3 + R 2 R 3 R 1 = R c , {\displaystyle {\frac {R_{1}R_{2}+R_{1}R_{3}+R_{2}R_{3}}{R_{1}}}=R_{c},}

得到 R c {\displaystyle R_{c}} 的表达式。同理,将式(8)除以 R 2 {\displaystyle R_{2}} R 3 {\displaystyle R_{3}} 也能得到相应的表达式。


参考文献

  • William Stevenson,“Elements of Power System Analysis 3rd ed.”,McGraw Hill, New York, 1975, ISBN 0-07-061285-4
  1. ^ A.E. Kennelly, Equivalence of triangles and stars in conducting networks, Electrical World and Engineer, vol. 34, pp. 413-414, 1899.
衡量
電路元件
概念
理論