Disphenocingulum

90th Johnson solid (22 faces)
Disphenocingulum
TypeJohnson
J89J90J91
Faces20 triangles
4 squares
Edges38
Vertices16
Vertex configuration4(32.42)
4(35)
8(34.4)
Symmetry groupD2d
Propertiesconvex
Net
3D model of a disphenocingulum

In geometry, the disphenocingulum is a Johnson solid with 20 equilateral triangles and 4 squares as its faces.

Properties

The disphenocingulum is named by Johnson (1966). The prefix dispheno- refers to two wedgelike complexes, each formed by two adjacent lunes—a figure of two equilateral triangles at the opposite sides of a square. The suffix -cingulum, literally 'belt', refers to a band of 12 triangles joining the two wedges.[1] The resulting polyhedron has 20 equilateral triangles and 4 squares, making 24 faces.[2]. All of the faces are regular, categorizing the disphenocingulum as a Johnson solid—a convex polyhedron in which all of its faces are regular polygon—enumerated as 90th Johnson solid J 90 {\displaystyle J_{90}} .[3]. It is elementary, meaning that it cannot be separated by a plane into two small regular-faced polyhedra.[4]

The surface area of a disphenocingulum with edge length a {\displaystyle a} can be determined by adding all of its faces, the area of 20 equilateral triangles and 4 squares ( 4 + 5 3 ) a 2 12.6603 a 2 {\displaystyle (4+5{\sqrt {3}})a^{2}\approx 12.6603a^{2}} , and its volume is 3.7776 a 3 {\displaystyle 3.7776a^{3}} .[2]

Cartesian coordinates

Let a 0.76713 {\displaystyle a\approx 0.76713} be the second smallest positive root of the polynomial 256 x 12 512 x 11 1664 x 10 + 3712 x 9 + 1552 x 8 6592 x 7 + 1248 x 6 + 4352 x 5 2024 x 4 944 x 3 + 672 x 2 24 x 23 {\displaystyle {\begin{aligned}&256x^{12}-512x^{11}-1664x^{10}+3712x^{9}+1552x^{8}-6592x^{7}\\&\quad {}+1248x^{6}+4352x^{5}-2024x^{4}-944x^{3}+672x^{2}-24x-23\end{aligned}}} and h = 2 + 8 a 8 a 2 {\displaystyle h={\sqrt {2+8a-8a^{2}}}} and c = 1 a 2 {\displaystyle c={\sqrt {1-a^{2}}}} . Then, the Cartesian coordinates of a disphenocingulum with edge length 2 are given by the union of the orbits of the points ( 1 , 2 a , h 2 ) ,   ( 1 , 0 , 2 c + h 2 ) ,   ( 1 + 3 4 a 2 c , 0 , 2 c 1 c + h 2 ) {\displaystyle \left(1,2a,{\frac {h}{2}}\right),\ \left(1,0,2c+{\frac {h}{2}}\right),\ \left(1+{\frac {\sqrt {3-4a^{2}}}{c}},0,2c-{\frac {1}{c}}+{\frac {h}{2}}\right)} under the action of the group generated by reflections about the xz-plane and the yz-plane.[5]

References

  1. ^ Johnson, N. W. (1966). "Convex polyhedra with regular faces". Canadian Journal of Mathematics. 18: 169–200. doi:10.4153/cjm-1966-021-8. MR 0185507. S2CID 122006114. Zbl 0132.14603.
  2. ^ a b Berman, M. (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR 0290245.
  3. ^ Francis, D. (August 2013). "Johnson solids & their acronyms". Word Ways. 46 (3): 177.
  4. ^ Cromwell, P. R. (1997). Polyhedra. Cambridge University Press. p. 86–87, 89. ISBN 978-0-521-66405-9.
  5. ^ Timofeenko, A. V. (2009). "The non-Platonic and non-Archimedean noncomposite polyhedra". Journal of Mathematical Science. 162 (5): 717. doi:10.1007/s10958-009-9655-0. S2CID 120114341.
  • Weisstein, Eric W., "Disphenocingulum" ("Johnson solid") at MathWorld.
  • v
  • t
  • e
Johnson solids
Pyramids, cupolae and rotundaeModified pyramidsModified cupolae and rotundae
Augmented prismsModified Platonic solidsModified Archimedean solidsElementary solids
(See also List of Johnson solids, a sortable table)